
© Internet Initiative Japan Inc.

A Review of Research in System Software
Communications Since 2010

Figure 1: Structure of Communications Software in a General-purpose OS

2.1 Overview
Network interface cards (NICs) supporting speeds above

10 Gbps became commonplace in the early 2010s and are

now widely used in data-center and other applications.

With the performance of NICs rising, the efficiency of

the system software that controls this hardware, partic-

ularly its data communications, has become increasingly

important, and the research community has pursued

many avenues to improve this performance.

In Section 2.2, I start by looking at the behavior of system

software when processing communications. Section

2.3 then summarizes past research aimed at speeding

this up. With that background in place, Section 2.4 then

looks at IIJ Research Laboratory’s efforts in this area in

recent years.

I hasten to add, however, that the efforts described in

Section 2.4 are still in the research stages and not yet part

of IIJ’s service infrastructure.

2.2 Main Communications-related Program
 Behaviors
In Section 2.2.1, I start by walking through communications

processing in general-purpose OSes, and then in Section

2.2.2 I discuss communications on virtual machines

(VMs) commonly used in data centers.

2.2.1 Communications-related Processing in General-

 purpose OSes

Let’s look at communications processing in a general-pur-

pose OS environment, with reference to Figure 1.

■ Basic system structure

The three main components are (from top to bottom in

Figure 1):

(1) Application running in user space

(2) The kernel, which implements the network stack

and device drivers

(3) A NIC, which sends and receives packets.

2. Focused Research (1)

so
ck

et

qu
eu

e
N

IC

qu
eu

e

Wire

application

us
er

-s
pa

ce
ke

rn
el

B

network stack

device driver
A C

10

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

Figure 2: Processing of Incoming Packets on a General-purpose OS
—Part and Step Indicated at Right

Figure 3: Processing of Outgoing Packets on a General-purpose OS—
Part and Step Indicated at Right

■ Typical loop

Programs, called servers, that respond to client requests

typically run the following loop: (A) process incoming

packets in kernel space, (B) perform application-specific

processing in user space, and (C) process outgoing packets

in kernel space.

Packet receipt and transmission processing is summarized

in Figures 2 and 3 by execution context.

■ A: Incoming packet processing in kernel space

□ STEP 1: Hardware (NIC) notifies software

When a NIC receives a new packet, it issues a hardware

interrupt to the CPU to notify the software. This interrupts

the program that was running on the CPU and switches

to the hardware interrupt handler set up by the kernel

in advance. Hardware interrupt handlers are implementa-

tion-dependent, but it’s fairly common for them to start a

kernel thread to process incoming packets.

□ STEP 2: Process incoming packets

The kernel thread started to process the incoming packets

in Step 1 reads the incoming packet headers and processes

the packets accordingly. For example, if a TCP packet is

received, it checks the TCP ACK number for the corre-

sponding connection, and adds the packet to the queue of

the socket associated with that connection.

□ STEP 3: Notify user-space process

In Step 2, when data or a new connection is added to a

socket queue, if the user-space process/thread associated

with that socket is waiting (blocking state) for new input

per the select, poll, epoll_wait, or read family of system

calls (e.g., read or recvmsg), then the process/thread

started (unblocked).

■ B: Program processing in user space

□ STEP 1: Awaiting and detecting input events

Many server programs that run in user space stop

execution (remain in a blocking state) when using select,

poll, epoll_wait, or read system calls to wait for new input

to sockets (file descriptors) they are listening on. If input

is received on a socket, this standby (blocking) state is

released in Step 3 of A above (incoming packet processing

in kernel space). Also, when a system call like select,

poll, or epoll_wait unblock execution and return a value,

the kernel passes on information about which socket (file

descriptor) the input event occurred on.

□ STEP 2: Data passed from kernel to user space

The user-space program issues a read system call to

the socket (file descriptor) on which the input event in

Step 1 was detected, and then copies the data added

to the socket queue in Step 2 of A above (incoming

packet processing in kernel space) from the kernel to

user space.

NIC

interrupt handler (kernel)

kernel thread

kick the kernel thread

trigger a hardware interrupt

packet processing (e.g., TCP/IP)

push data to a socket queue

user-space program

kick the user-space program

invoke a read system call
to pull data from the socket queue

A: STEP 1

A: STEP 2

A: STEP 3

B: STEP 1detect an event at a socket

B: STEP 2

interrupt

scheduling

scheduling

NIC

kernel

transmit packets from the NIC

user-space program

C: STEP 3

C: STEP 1

C: STEP 2

invoke a write system call B: STEP 4

packet processing (e.g., TCP/IP)

pass data to subsequent subsystems

request packet TX to the NIC

push data to the socket queue

1111

© Internet Initiative Japan Inc.

*1 In some cases, a write system call for a TCP socket (file descriptor) may not immediately result in the data specified by the user-space program being transmitted

by the NIC. Possible reasons for this include the TCP implementation’s congestion control, Nagle’s algorithm waiting for the outgoing buffer to reach a certain size

as a means of improving performance, and the delay of data transmissions by subsystems such as qdisc, which handles NIC bandwidth control.

□ STEP 3: Application-specific processing

The program performs its application-specific processing

on the data received in Step 2. For example, a web server

would parse the received data, determine the content of

the request, and then generate response data.

□ STEP 4: Tell the kernel to send the data

The program issues a write system call (e.g., write or

sendmsg) to the socket (file descriptor) that tells the kernel

to send the data generated in Step 3.

■ C: Outgoing packet processing in kernel space

□ STEP 1: Data passed from user space to kernel

The write system call issued in Step 4 of B switches pro-

cessing to kernel space. The kernel then copies the data

generated by the user-space program into kernel space

and adds it to the send queue associated with the socket

specified by the user-space program.

□ STEP 2: Header processing based on protocol

In the same kernel context as in Step 1, packet headers

are added to the data to be transmitted if necessary. Once

the packet is ready and the kernel subsystem determines

it is okay to transfer the data, it is passed on to the next

subsystem*1.

□ STEP 3: Data transmitted from the NIC

The data (with header added) is ultimately passed to the

NIC device driver, and the device driver tells the NIC to

send the data.

2.2.2 VM Network I/Os

Now let’s look at how communications processing works

in a VM environment, with reference to Figure 4.

■ Basic systm structure

The four components are (from top to bottom in Figure 4):

(1) Virtual machine (VM)

(2) Virtual NICs assigned to the VM

(3) A host kernel that implements a virtual I/O backend,

tap devices, virtual switches, and device drivers

(4) A physical NIC.

VM communication functions can be implemented in a

number of ways, but here I consider a format similar to

Linux vhost-net, in which threads inside the host kernel

function as the virtual I/O backend.

Figure 4: Virtual Machine Communications Mechanism

ta
p

de
vi

ce

qu
eu

e

ph
ys

ic
al

N

IC

qu
eu

e

Wire

ho
st

 k
er

ne
l

device driver

virtual I/O backend

vi
rtu

al

N
IC

qu

eu
e

V
M vNIC device driver

virtual I/O backend

vNIC device driver

virtual switch

D E D

D

E

E

12

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*2 When a general-purpose OS is running on a VM, the behavior of communication programs within the VM is basically the same as described in Section 2.2.1.

■ Typical loop

On VMs, programs that respond to requests, as discussed

above, typically run the following loop: (D) process incom-

ing packets for the VM in the host kernel, Parts (A)–(C) as

described above for general-purpose OSes*2, (E) process

the VM’s outgoing packets in the host kernel.

Packet receipt and transmission processing is summarized

in Figures 5 and 6 by execution context.

■ D: Processing incoming packets for the VM

□ STEP 1: Notification from hardware (physical NIC)

The initial processing performed when a packet arrives at

the physical NIC is the same as in Step 1 of A above. A

hardware interrupt handler is started in the host kernel, and

a kernel thread is started to process incoming packets.

□ STEP 2: Incoming packets passed to virtual switch

As in Step 2 of A above, the kernel thread started in Step

1 processes the received packet, but the processing per-

formed is different from in A above. First, the received

packet is passed to the virtual switch. The virtual switch

reads the Ethernet header of the received packet, finds

the appropriate destination interface for the packet, and

adds the packet to that interface’s receive queue. Here,

if the destination interface is a tap device, it starts the

backend kernel thread that is responsible for virtual I/O

and associated with that tap device.

□ STEP 3: Pass received data to virtual NIC

The virtual I/O backend kernel thread started in Step

2 pulls data from a tap device and pushes it to the

virtual NIC’s receive queue. It then sends an interrupt

to the VM to notify it that packets were received on

the virtual NIC.

□ STEP 4: Process incoming packets within the VM

The VM receives the interrupt sent by the host in Step

3, and processing switches to the interrupt handler set

up by the kernel within the VM. From this point on,

processing within the VM follows the process starting

from Step 1 of A above.

Figure 5: Processing of Incoming Packets on a Virtual Machine
—Part and Step Indicated at Right

Figure 6: Processing of Outgoing Packets on a Virtual Machine
—Part and Step Indicated at Right

NIC

interrupt handler (host kernel)

kernel thread

kick the kernel thread

trigger a hardware interrupt

pass packets to a virtual switch

packets are pushed to a tap device

kernel thread (virtual I/O backend)

kick a kernel thread for virtual I/O

pass packets to a virtual NIC

D: STEP 1
(A: STEP 1)

D: STEP 2

pull packets from a tap device
D: STEP 3

interrupt to host

scheduling in host

scheduling in host
send an emulated interrupt to a VM

interrupt handler (VM kernel)
kick the (VM) kernel thread

scheduling in host
D: STEP 4

kernel thread (VM kernel)

scheduling in VM
A: STEP 2, 3, ...

NIC

kernel (host)

transmit packets from the NIC

virtual NIC device driver (VM kernel)

E: STEP 3

E: STEP 2

send a TX request to the host

E: STEP 1

kick the kernel thread for virtual I/O

kernel thread (virtual I/O backend)
pull packets from the virtual NIC

scheduling in host

push packets to a tap device

request packet TX to the NIC

packets are passed to a virtual switch

1313

© Internet Initiative Japan Inc.

*3 Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling with Exception-Less System Calls. In 9th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 10). (https://www.usenix.org/conference/osdi10/flexsc-flexible-system-call-scheduling-exception-less-system-calls).

*4 The idea of reducing context switching by issuing multiple requests in batches had been explored before the advent of FlexFC via a technique called multi-calling

in compilers*5 and hypervisors*6.

*5 Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunen, and Richard D. Schlichting. 2003. Cassyopia: Compiler Assisted System Optimization. In Proceedings

of the 9th Conference on Hot Topics in Operating Systems - Volume 9 (HotOS ’03), 18. (https://www.usenix.org/conference/hotos-ix/cassyopia-compiler-assist-

ed-system-optimization).

*6 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of Virtual-

ization. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP ’03), 164–177. (https://doi.org/10.1145/945445.945462).

program described in Part B above runs its loop. The point

to note here is that the system calls involve switching the

user and kernel contexts and are thus CPU-intensive. In

specific terms, the workloads discussed in Part B involve

frequent system call invocations: select, poll, and epoll _

wait in Step 1, read system calls in Step 2, and write

system calls in Step 4. The issue is that this increases

the amount of time spent on context switching as a

proportion of the overall program execution time.

■ Issuing multiple system calls at once

In 2010, researchers presented a system called FlexSC*3

designed to allow multiple processing requests to be

sent to the kernel at once (batching). To achieve this,

the system creates a set of memory pages that is shared

among user and kernel space. To execute a system call,

user-space threads write the system call and its argu-

ments to the shared memory area, and a kernel thread

asynchronously executes these calls and returns the

results. This mechanism eliminates the need for context

switching on a call-by-call basis. Implementation methods

differ in their details, but this approach*4 came to be

widely adopted in efforts to optimize network stack

implementations, as described in Section 2.3.3.

■ E: Process the VM’s outgoing packets

□ STEP 1: VM sends a transmission request

At this point, the VM has executed Step 3 of C above and

added the outgoing data to the virtual NIC’s send queue

via the virtual NIC device driver. Now when the virtual

NIC is asked to send packets, execution context switches

from the VM to the host kernel, and the kernel thread for

virtual I/O is started.

□ STEP 2: Data passed from virtual NIC to tap device

The kernel thread for virtual I/O started in Step 1 above

pulls data from the virtual NIC’s send queue and pushes

it to a tap device.

□ STEP 3: Transfer data from tap device to virtual switch

After Step 2, packets are passed through the tap device

to the virtual switch and transmitted from the interface

corresponding to the packet’s destination.

2.3 Research Community Efforts
Here, I go over efforts by the research community to speed

up the workloads discussed in the previous sections.

2.3.1 Reducing System Call Costs

The faster a NIC’s I/O operations, the more frequently

(to the extent allowed by CPU resources) the user-space

14

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*7 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.

Unikernels: Library Operating Systems for the Cloud. In Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languag-

es and Operating Systems (ASPLOS ’13), 461–472. (https://doi.org/10.1145/2451116.2451167).

*8 Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and Vlad Zolotarov. 2014. OSv - Optimizing the Operating System for Virtual Machines.

In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 61–72. (https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity).

*9 Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E. Engelstad, and Kyrre Begnum. 2015. IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud

Services. In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), 250– 257. (https://doi.org/10.1109/Cloud-

Com.2015.89).

*10 Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My Vm Is

Lighter (and Safer) Than Your Container. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17), 218–233. (https://doi.

org/10.1145/3132747.3132763).

*11 Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM SIGPLAN/

SIGOPS International Conference on Virtual Execution Environments (VEE 2019), 59–73. (https://doi.org/10.1145/3313808.3313817).

*12 Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux in Unikernel Clothing. In Proceedings of the Fifteenth European Conference on Com-

puter Systems (EuroSys ’ 20). (https://doi.org/10.1145/3342195.3387526).

*13 Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi Rădu-

canu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft: Fast, Specialized Unikernels the Easy Way. In Proceedings

of the Sixteenth European Conference on Computer Systems (EuroSys ’21), 376–394. (https://doi.org/10.1145/3447786.3456248).

*14 Ali Raza, Thomas Unger, Matthew Boyd, Eric B Munson, Parul Sohal, Ulrich Drepper, Richard Jones, Daniel Bristot De Oliveira, Larry Woodman, Renato Mancuso,

Jonathan Appavoo, and Orran Krieger. 2023. Unikernel Linux (UKL). In Proceedings of the Eighteenth European Conference on Computer Systems (EuroSys ’23),

590–605. (https://doi.org/10.1145/3552326.3587458).

*15 Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An Operating System with Kernel Virtualization. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (SOSP ’13), 116–132. (https://doi.org/10.1145/2517349.2522719).

*16 Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E.

Porter. 2014. Cooperation and Security Isolation of Library OSes for Multi-Process Applications. In Proceedings of the Ninth European Conference on Computer

Systems (EuroSys ’14). (https://doi.org/10.1145/2592798.2592812).

*17 Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo. 2016. EbbRT: A Framework for Building PerApplication Library Operating

Systems. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 671– 688. (https://www.usenix.org/conference/osdi16/tech-

nical-sessions/presentation/schatzberg).

*18 Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX: A Dynamic

Library Operating System for Simplified and Efficient Cloud Virtualization. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), 173–186. (https://

www.usenix.org/conference/atc18/presentation/zhang-yiming).

*19 Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,

Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. 2021. The Demikernel Datapath OS Architecture for Microsecond-Scale Datacenter

Systems. In Proceedings of the ACM Sigops 28th Symposium on Operating Systems Principles (SOSP ’21), 195–211. (https://doi.org/10.1145/3477132.3483569).

■ Eliminating the boundary between apps and the kernel

Another approach is to run applications and the OS kernel

in the same address space, thus eliminating the boundary

between applications and the kernel. This makes it possi-

ble for application programs to use features implemented

by the kernel via ordinary function calls rather than sys-

tem calls. This can be done via unikernels*7, which runs all

programs—including applications and the kernel—in the

same address space, and library OSes, which implement

kernel functions as libraries that can run in user space. In

addition to improved performance due to reduced system

call context switching costs, unikernels and library OSes

also offer other notable advantages such as shorter

startup times for high-demand OS functions in data-cen-

ter environments, reduced memory usage, and improved

security. This approach has yielded much research and

a range of implementations, including unikernel systems

like OSv*8, IncludeOS*9, LightVM*10, HermiTux*11, Lupin

Linux*12, Unikraft*13, and Unikernel Linux*14, as well as

library OSes like VirtuOS*15, Graphene*16, EbbRT*17,

KylinX*18, and Demikernel*19.

1515

© Internet Initiative Japan Inc.

*20 Intel. 2010. Data Plane Development Kit. (https://www.dpdk.org/).

*21 Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), 101–112. (https://www.

usenix.org/conference/atc12/technical-sessions/presentation/rizzo).

*22 When a newly received packet is detected, the data will already be in the packet buffer pasted into the user space, so there is no need to perform the processing

described in Step 2 of B.

□ STEP 2: Application-specific processing

As in Step 3 of Part B, the program performs applica-

tion-specific processing based on the data received.

□ STEP 3: Transmit data from the NIC

If the application-specific processing requires data to

be transmitted, the program first populates the outgo-

ing packet buffer that was pasted into user space with

the data it wants to send, and then uses the interface

provided by the packet I/O framework to ask the NIC to

transmit the packets.

□ Caveat

The overall program behavior described above replaces

all of the processing done in Parts A, B, and C in the

previous sections and greatly simplifies things by making

it possible to pass data between the user-space program

and the NIC extremely quickly. But it must be noted that

because this does not include protocol-related processing

as described in Step 2 of A and Step 2 of C, it is not

possible to run a web server that delivers data via TCP

connections with this setup as is.

□ Available cost reductions

The details depend on the packet I/O framework imple-

mentation, but with DPDK*20, for example, not only is

there no intervening protocol-related processing (as

discussed in the caveat above), other costs that can be

reduced relative to the general-purpose OS environment

discussed in Section 2.2.1 include the kernel thread

2.3.2 More Efficient Packet Passing Between User Space

 and NICs

With 10Gbps NICs now widespread, it has become difficult

to achieve wire-rate performance, particularly with

small packet sizes, with configurations like that illus-

trated in Figure 1.

■ Program behavior

To address this issue, in the early 2010s research-

ers presented packet I/O frameworks like Data Plane

Development Kit (DPDK)*20 and netmap*21 to enable the

efficient transfer of data between user space and NICs.

Packet I/O frameworks have two basic functions:

(1) Paste the NIC’s packet buffer directly into the

user-space program.

(2) Provide a lightweight interface to allow the user-space

program to

 a) detect new packets received by the NIC, and

 b) request the NIC to transmit packets.

■ Program behavior

When a user-space program uses these basic packet I/O

framework functions to perform processing in the manner

described in Part B above (receiving data and then gener-

ating and sending a response), the behavior is as follows.

□ STEP 1: Detect received packets

The program uses the interface provided by the packet I/O

framework to detect new packets received by the NIC*22.

16

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*23 NFV makes it possible to implement network functions in software on commodity hardware, whereas previously you needed to purchase expensive custom hard-

ware appliances for each network function. NFV allows a single computer to be used in multiple applications, and It is considered easier to add/change functions

with NFV than with custom hardware. The availability of high-speed NICs at low prices, in particular, has likely been a tailwind for the uptake of NFV.

*24 Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet Processing. In 2015 ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS), 5–16. (https://doi.org/10.1109/ANCS.2015.7110116).

*25 Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Framework for NFV Applica-

tions. In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP ’15), 121–136. (https://doi.org/10.1145/2815400.2815423).

*26 Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott Shenker. 2016. NetBricks: Taking the V Out of NFV. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16), 203–216. (https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda).

*27 Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Under-

lying Hardware. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), 171–186. (https://www.usenix.org/conference/nsdi18/

presentation/katsikas).

*28 Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. 2012. Improving Network Connection Locality on Multicore Systems. In Proceedings of

the 7th ACM European Conference on Computer Systems (EuroSys ’12), 337–350. (https://doi.org/10.1145/2168836.2168870).

*29 Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012. MegaPipe: A New Programming Interface for Scalable Network I/O. In 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12), 135–148. (https://www.usenix.org/conference/osdi12/technical-sessions/presentation/

han).

*30 Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implementation for Short-Lived

Connections. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS

’16), 339–352. (https://doi.org/10.1145/2872362.2872391).

scheduling that starts in Step 1 of A, the scheduling

associated with user-space program startup originating

in Step 3 of A, and the system calls and associated

copying of memory between user space and the kernel

included in Steps 1, 2, and 4 of B.

□ Main use cases

As mentioned in the above caveat, protocol-related pro-

cessing—such as for TCP—is not performed on data that

the user-space program receives from the NIC. This is

actually quite useful when network functions such as a

router are implemented in software, and so packet I/O

frameworks are widely used in contexts like Network

Function Virtualization (NFV)*23. The research community,

for example, has developed packet I/O framework-based

NFV platforms such as FastClick*24, E2*25, NetBricks*26,

and Metron*27. Also, as described in the next section, pro-

tocol stacks that run on packet I/O frameworks have been

developed to enable applications like web servers to be

used in combination with packet I/O frameworks. Packet

I/O frameworks are also being used to speed up VM com-

munications, as discussed in Section 2.3.4.

2.3.3 Rethinking Network Stack Design

■ Scaling in multicore environments

Many NICs let you create multiple packet queues to scale

performance in multicore environments, and dividing

them up for use by separate CPU cores makes it possi-

ble to avoid lock contention when attempting to access

the queues. Many high-performance NICs also imple-

ment a feature called Receive Side Scaling (RSS) in

hardware. RSS allows processing to be distributed by

steering received packets to specific queues according

to TCP connection or IP address. It is not enough to

separate the packet queues, however. There is only one

queue per socket for newly established TCP connections,

and performance does not scale if accept system calls

are issued to the same socket in parallel in a multicore

environment. To address this, systems such as Affinity-

Accept*28, MegaPipe*29, and Fastsocket*30 offer a means

of setting up TCP connection queues for each core, and

it has been shown that this makes it possible to scale

the performance of accept processing in multicore en-

vironments. MegaPipe*29 also enables batch processing

inspired by FlexSC*3, which I covered in Section 2.3.1.

■ Use of packet I/O frameworks

Researchers have studied ways of using packet I/O

frameworks to speed up programs like web servers, as

mentioned under “Main use cases” in Section 2.3.2.

Specifically, protocols like TCP/IP have been imple-

mented that can be incorporated into Step 2 under

“Program behavior” in Section 2.3.2, and this makes it

possible to eliminate processing costs as mentioned in

1717

© Internet Initiative Japan Inc.

*31 Ilias Marinos, Robert N. M. Watson, and Mark Handley. 2014. Network Stack Specialization for Performance. In Proceedings of the 2014 ACM Conference on

SIGCOMM (SIGCOMM ’14), 175–186. (https://doi.org/10.1145/2619239.2626311).

*32 EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable User-Lev-

el TCP Stack for Multicore Systems. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 489–502. (https://www.usenix.

org/conference/nsdi14/technical-sessions/presentation/jeong).

*33 Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating

System Is the Control Plane. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 1–16. (https://www.usenix.org/conference/

osdi14/technical-sessions/presentation/peter).

*34 Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for

High Throughput and Low Latency. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 49–65. (https://www.usenix.org/

conference/osdi14/technical-sessions/presentation/belay).

*35 Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP Stack. Swedish Institute of Computer Science 2, 77.

*36 Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016. StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs. In 2016

USENIX Annual Technical Conference (USENIX ATC 16), 43–56. (https://www.usenix.org/conference/atc16/technical-sessions/presentation/yasukata).

*37 Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.

In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). (https://doi.org/10.1145/3302424.3303985).

*38 Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File System. In Proceedings of

the 26th Symposium on Operating Systems Principles (SOSP ’17), 460–477. (https://doi.org/10.1145/3132747.3132770).

*39 Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei Zhang, and Simon Peter. 2022. zIO: Accelerating IO-Intensive Applications with Transparent Zero-Copy

IO. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), 431–445. (https://www.usenix.org/conference/osdi22/presentation/

stamler).

*40 George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the

26th Symposium on Operating Systems Principles (SOSP ’17), 325–341. (https://doi.org/10.1145/3132747.3132780).

*41 Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-Sensitive

Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), 361–378. (https://www.usenix.org/conference/

nsdi19/presentation/ousterhout).

*42 Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for μsec-

ond-scale Tail Latency. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), 345–360. (https://www.usenix.org/conference/

nsdi19/presentation/kaffes).

*43 Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020. Caladan: Mitigating Interference at Microsecond Timescales. In 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20), 281–297. (https://www.usenix.org/conference/osdi20/presentation/fried).

in the kernel by using the kernel implementation for TCP/

IP protocol-related processing like that in Step 2 of A and

Step 2 of C. In 2019, researchers announced a TCP stack

implementation called TAS*37, which also uses DPDK*20

and operates in user space. In 2022, researchers pre-

sented a system called zIO*39 that extends TAS*37 and the

Strata*38 file system and makes it possible to eliminate

I/O-related memory copying without making changes to

existing applications. Researchers have also looked at

ways of optimizing the allocation of CPU cores to tasks

in order to achieve the low levels of communications la-

tency required in data-center settings, as demonstrated

by systems like ZygOS*40, Shenango*41, Shinjuku*42, and

Caladan*43. These systems also employ a TCP/IP stack

running on top of DPDK*20.

“Available cost reductions” in that section, resulting in

significant speed increases. In 2014, researchers pre-

sented user-space network stacks called Sandstorm*31

and mTCP*32. mTCP*32 offers a number of optimizations.

In addition to request batching as proposed in FlexSC*3, it

also divides TCP connection queues among CPU cores as

in Affinity-Accept*28 and MegaPipe*29, which I mentioned

in Section 3.3.1. Also in 2014, researchers presented

new OSes called Arrakis*33 and IX*34 designed to make it

faster to use devices. Both of these allow a network stack

based on a TCP/IP implementation called lwIP*35 to deliver

I/O directly to the NIC. In 2016, researchers presented a

system called StackMap*36 that uses a packet I/O frame-

work to adopt the program behavior described in Section

2.3.2 for packet sending/receiving while also offering

the benefits of the full-featured TCP/IP implementation

18

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*44 YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo Park. 2020. AccelTCP: Accelerating Network Applications with Stateful TCP Off-

loading. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), 77–92. (https://www.usenix.org/conference/nsdi20/presenta-

tion/moon).

*45 Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport Protocols

in High-Speed NICs. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), 93–109. (https://www.usenix.org/conference/

nsdi20/presentation/arashloo).

*46 Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022. FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In 19th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 22), 87–102. (https://www.usenix.org/conference/nsdi22/presentation/shashidhara).

*47 Taehyun Kim, Deondre Martin Ng, Junzhi Gong, Youngjin Kwon, Minlan Yu, and KyoungSoo Park. 2023. Rearchitecting the TCP Stack for I/O-Offloaded Content

Delivery. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), 275–292.

 (https://www.usenix.org/conference/nsdi23/presentation/kim-taehyun).

*48 Luigi Rizzo and Giuseppe Lettieri. 2012. VALE, a Switched Ethernet for Virtual Machines. In Proceedings of the 8th International Conference on Emerging Network-

ing Experiments and Technologies (CoNEXT ’12), 61–72. (https://doi.org/10.1145/2413176.2413185).

*49 Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2013. Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In Pro-

ceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT ’13), 97–108. (https://doi.org/10.1145/2535372.2535379).

■ Offloading processing to hardware

The sort of processing involved in TCP, such as connec-

tion state management, is relatively complex, putting

high loads on the CPU, so researchers have also ex-

plored an approach known as the TCP Offload Engine

(TOE) for offloading such processing to hardware de-

vices like NICs. In 2020, researchers presented a system

called Accell TCP*44, which allows processing related to

certain states—such as establishing TCP connections—

to be offloaded to the NIC, making it possible to perform

connection splicing and other such processing at high

speed. The researchers showed that this can mainly help

improve the performance of L7 load balancers. Also in

2020, researchers presented Tonic*45, a hardware de-

sign that enables the implementation of transport layer

protocols in the NIC. In 2022, researchers unveiled

FlexTOE*46, a TOE implementation that runs on smart

NICs, and 2023 saw researchers present IO-TCP*47, a

system in which the NIC, in addition to performing TCP

processing, is given direct access to storage hardware

to streamline content delivery workloads.

2.3.4 Speeding up VM Communications

As Figure 4 shows, the main software components in

VM communications are virtual switches that multiplex

packet input/output on physical NICs, and a backend

that handles virtual NIC emulation. In this section, I go

over efforts to optimize these two components.

■ Speeding up virtual switches

Packet I/O frameworks, which I mentioned in Section

2.3.2, have had a huge impact in speeding up virtual

switches, and research has shown that applying packet

I/O frameworks around virtual switches can improve

performance significantly relative to conventional ap-

proaches. In the case of VM I/O as discussed in Section

2.2.2, virtual switches run in Step 2 of D and Step 3 of E,

so improving virtual switch performance can be a huge

help in enhancing VM communications performance. On

the research front, in 2012 researchers presented a vir-

tual switch called VALE*48 that can run on the netmap*21

API mentioned in Section 2.3.2, and 2013 saw the un-

veiling of CuckooSwitch*49, which uses DPDK*20. And in

1919

© Internet Initiative Japan Inc.

*50 Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. 2015. mSwitch: A Highly-Scalable, Modular Software Switch. In Proceedings of the 1st ACM SIG-

COMM Symposium on Software Defined Networking Research (SOSR ’15). (https://doi.org/10.1145/2774993.2775065).

*51 Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and

Martin Casado. 2015. The Design and Implementation of Open vSwitch. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),

117–130. (https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff).

*52 Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In 2005 USENIX Annual Technical Conference (USENIX ATC 05), 41–46. (https://www.

usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator).

*53 Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. 2013. Speeding up Packet I/O in Virtual Machines. In Architectures for Networking and Communications

Systems, 47–58. (https://doi.org/10.1109/ANCS.2013.6665175).

*54 Stefano Garzarella, Giuseppe Lettieri, and Luigi Rizzo. 2015. Virtual Device Passthrough for High Speed VM Networking. In 2015 ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems (ANCS), 99–110. (https://doi.org/10.1109/ANCS.2015.7110124).

*55 Vincenzo Maffione, Luigi Rizzo, and Giuseppe Lettieri. 2016. Flexible Virtual Machine Networking Using Netmap Passthrough. In 2016 IEEE International Symposium

on Local and Metropolitan Area Networks (LANMAN), 1–6. (https://doi.org/10.1109/LANMAN.2016.7548852).

*56 Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: the Linux Virtual Machine Monitor. In Proceedings of the 2007 Ottawa Linux

Symposium (OLS ’07).

*57 Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function

Virtualization. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 459–473. (https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/martins).

*58 Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms. In

11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), 445–458. (https://www.usenix.org/conference/nsdi14/technical-sessions/

presentation/hwang).

*59 Kenichi Yasukata, Felipe Huici, Vincenzo Maffione, Giuseppe Lettieri, and Michio Honda. 2017. HyperNF: Building a High Performance, High Utilization and Fair

NFV Platform. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17), 157–169. (https://doi.org/10.1145/3127479.3127489).

QEMU*52/KVM*56, and showed that on ptnetmap, VMs

can achieve the 10Gbps wire rate of 14.88Mpps with

the smallest possible packet size. In 2014, researchers

also presented ClickOS*57, which uses VMs and replaces

netfront/netback, the VM communications mechanism

used in Xen*6, with a communications mechanism based

on VALE*48 and the netmap*21 API in order to speed up

communications throughput on NFV platforms. Also in

2014, researchers presented NetVM*58, an NFV platform

based on VMs, which uses DPDK*20 and QEMU*52/KVM*56

to speed up VM communications throughput. In 2017,

researchers presented a framework called HyperNF*59,

which, even in VM environments that use VALE*48, ad-

dresses the problem of suboptimal CPU utilization due

to the separation of the kernel threads running on the

host side as described in Step 2 of E and the threads

run on the VM’s virtual CPU. It does this by performing

the sort of virtual switch processing that happens on

VALE*48 within hypercalls that place it inside the virtual

CPU’s execution context. The researchers showed that

the increased efficiency of CPU utilization resulted in

high VM communications throughput.

2015, researchers presented mSwitch*50 as an extension

of VALE*48. Work to add support for DPDK*20 to Open

vSwitch*51, a widely used virtual switch implementation,

was also underway around this time.

■ Improvements to the virtual I/O backend

Around 2013, researchers made attempts to use virtual

switches like that described above under “Speeding up

virtual switches” in the VM communications backend.

One of these attempts uses VALE*48 as the network

backend on QEMU*52. Specifically, it replaces the ex-

isting virtual switch implementation in the OS kernel

shown in Figure 2 with the VALE*48 switch, and the

researchers showed that this can improve VM I/O per-

formance*53. With this optimization, however, the virtual

NIC assigned to the VM was of the existing type and

thus not all that compatible with VALE*48. The drawback

here was that, in Step 2 of D and Step 2 of E, it was

unable to eliminate the copying of packet data mem-

ory between the virtual switch and the virtual NIC, so

room to improve performance remained. To fill the gap,

in 2015 researchers implemented ptnetmap*54*55, which

assigns netmap*21 interfaces directly to the VM, for

20

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*60 PCI-SIG. 2010. Single Root I/O Virtualization and Sharing Specification. (https://pcisig.com/specifications/iov/single_root/).

*61 Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung,

Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar

Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra

Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 18), 51–66. (https://www.usenix.org/conference/nsdi18/presentation/firestone).

■ Offloading processing to hardware

Many NICs implement a hardware packet switching func-

tion like Single Root I/O Virtualization (SR-IOV)*60, and

using this can often produce better performance than a

virtual switch implementation in software. Yet SR-IOV*60

only provides limited behavioral control of packet for-

warding between physical and virtual interfaces from

software, which can impede its usefulness in settings

where fine-grained control is needed, such as data cen-

ters. To address this, in 2018 researchers published a

paper on AccelNet*61, a system that uses smart NICs to

enable more flexible network control (the deployment

of AccelNet in commercial environments had apparently

begun in 2015).

2.4 Recent Work at IIJ Research Laboratory
In this section, I explain what sort of efforts IIJ Research

Laboratory is undertaking based on the past research

covered above.

2.4.1 Integrating New OS Features and Existing Programs

As the preceding section illustrates, for over a decade

now the research community has been proposing designs

and implementations of new OS features that would re-

place existing mechanisms.

■ Problem

System call hooking is commonly used to apply new OS

features transparently to existing application programs.

2121

© Internet Initiative Japan Inc.

*62 Kenichi Yasukata. 2021. A Method for Rapidly Hooking System Calls with Zero Call Drops. IIJ Engineers Blog. (https://eng-blog.iij.ad.jp/archives/11169, in Japanese).

*63 Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin, and Kenta Ishiguro. 2023. zpoline: a system call hook mechanism based on binary rewriting. In 2023 USENIX

Annual Technical Conference (USENIX ATC 23), 293–300. (https://www.usenix.org/conference/atc23/presentation/yasukata).

*64 Gabriel Krisman Bertazi. 2021. Syscall User Dispatch. (https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html).

*65 Salvatore Sanfilippo. 2009. Redis - Remote Dictionary Server. (https://redis.io/).

at virtual memory address 0, thus replacing syscall/

sysenter calls in the program with jumps to specific

hook processing routines. We found this mechanism to

produce loads 28–700x lower than conventional mecha-

nisms, such as binary rewriting techniques that use int3

instructions, ptrace, and Syscall User Dispatch*64. Also,

when we used these techniques to apply lwIP*35 and

DPDK*20 with Redis*65, a widely used key-value store, we

found that, relative to when there is almost no load from

system hooks, the conventional mechanisms caused a

72.3–98.8% load degradation vs. only a 5.2% degradation

with our proposed method.

2.4.2 Speeding up VM I/O

The communications performance of VMs has improved

significantly over the last decade. Yet challenges remain.

■ Problem

The cost of exiting a VM context is considered to be a

cause of performance degradation in VM environments

But the existing system call hook mechanism does have

its drawbacks: it can cause significant application per-

formance degradation, and some system call hooks

can fail. These shortcomings limit the applicability of

unikernels, library OSes, and new network stack imple-

mentations like those discussed in previous sections,

which, as a result, prevents many people from enjoying

the benefits of the research work that has been done.

This problem makes it difficult to use existing technol-

ogies that could greatly improve software execution

efficiency, which would reduce the number of servers

needed and cut power consumption.

■ Solution

To solve this problem, we devised a new system call hook

mechanism called zpoline*62*63 that addresses the existing

mechanism’s drawbacks. zpoline*62*63 replaces the sy-

scall and sysenter instructions, which are two bytes

and used to issue system calls, with callq *%rax call

instructions (also two bytes) and sets up trampoline code

22

Vol. 60Dec.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*66 Kenichi Yasukata. 2023. The Path to Getting a Paper Accepted for ASPLOS 2023—Challenges and Solutions in the Sharing of Memory Between VMs. IIJ Engineers

Blog. (https://eng-blog.iij.ad.jp/archives/18819, in Japanese).

*67 Kenichi Yasukata, Hajime Tazaki, and Pierre-Louis Aublin. 2023. Exit-Less, Isolated, and Shared Access for Virtual Machines. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3 (ASPLOS 2023), 224–237. (https://doi.

org/10.1145/3582016.3582042).

that has yet to be eliminated. In specific terms, the exit

generated in Step 2 of E in Section 2.2.2 hinders I/O

performance, which limits the performance of workloads

running on the VMs. If the I/O performance of the VM

itself is low, this limits the maximum achievable perfor-

mance even when using the mechanisms described in

Sections 2.3.1 and 2.3.3 to streamline processing re-

lated to the network running on the VM. And this is

a serious issue given that a lot of computational work

currently runs on VMs within data centers.

■ Solution

To address this, we developed a mechanism dubbed

Exit-Less, Isolated, and Shared Access (ELISA)*66*67,

which allows the VM to access NICs shared between

VMs without exiting the VM context. With our proposed

method, the VMFUNC CPU instruction is used to create

a new context within the VM in which only behavior

permitted by the host can happen, and the NIC can only

be accessed within this new context. This prevents VMs

from performing malicious behavior through the NIC.

Our method also implements methods for VMs to access

devices in software, so it can provide greater behavioral

flexibility than SR-IOV*60. We showed that implementing

VM communication functions with our method can yield

up to 163% performance gains compared with a mecha-

nism that is similar to HyperNF*59 in that it exits from the

VM context with every VM I/O request.

2.5 Conclusion
I first took a brief look at the general behavior of system

software communications functions, and then examined

how past research in system software communications

since the early 2010s has improved these functions,

and then rounded out the discussion with a look at IIJ

Research Laboratory’s recent work in this area.

Kenichi Yasukata

Researcher, Research Laboratory, IIJ

2323

	2. Focused Research (1)
	2.1	Overview
	2.2 Main Communications-related Program Behaviors
	2.2.1	Communications-related Processing in General-		purpose OSes
	2.2.2	VM Network I/Os

	2.3	Research Community Efforts
	2.3.1	Reducing System Call Costs
	2.3.2 More Efficient Packet Passing Between User Space and NICs
	2.3.3	Rethinking Network Stack Design
	2.3.4	Speeding up VM Communications

	2.4	Recent Work at IIJ Research Laboratory
	2.4.1	Integrating New OS Features and Existing Programs
	2.4.2	Speeding up VM I/O

	2.5	Conclusion

