
© Internet Initiative Japan Inc.

Malware Analysis with CTO and CTO Function Lister

*1 The presentation given at VB2021 localhost is available at the following URL. CTO (Call Tree Overviewer) yet another function call tree viewer (https://vblocalhost.

com/conference/presentations/cto-call-tree-overviewer-yet-another-function-call-tree-viewer/). CTO and CTO Function Lister are also published on my GitHub repository

(https://github.com/herosi/CTO).

*2 IDA Pro (https://hex-rays.com/ida-pro/) is a disassembler and decompiler, essential tools for malware analysts. CTO and CTO Function Lister were written using

the IDAPython API.

At the Virus Bulletin conference in 2021 (VB2021 localhost),

I presented tools called CTO and CTO Function Lister*1. I have

continued to improve the tools since then by adding new

functionality. In this article, I explain what sort of malware

analysis tasks these tools are applicable to, along with an

in-the-wild malware sample.

The malware sample I use here is selfmake3, which downloads

and executes a RAT called SpiderPig, and it has been used

in targeted attacks. The SHA256 hash value appears below.

2.1 Startup and Initial Windows
Both CTO and CTO Function Lister are IDA Pro*2 plugins.

They can be launched from Plugins in the Edit menu,

toolbar buttons, or shortcut keys. In Figure 1, you will

see icons that look like a middle-aged man on the far

right of the IDA window toolbar. These are the CTO and

CTO Function Lister icons. When clicked, CTO Function

Lister appears on the left side of the window, and CTO

on the right. The CTO tool is mainly used for visualizing

function call parent-child relationships. The main purpose

of CTO Function Lister is to extract and retain a list of

functions and notable characteristics of each function,

and to search for the information via filters. In the figure,

you can see that each tool is synchronized with the

address of the “_WinMain” function (more precisely, the

MFC AfxWinMain function) displayed in IDA’s disassembly

view (IDA View-A) and is displaying information for that

address.

2. Focused Research (1)

Figure 1: The CTO and CTO Function Lister Launch Buttons and Display Panels

7DA969010A55919AA66ED97A2D2D6D6A0BE3D8DC6151EEB6CEBC15E4F06D4553

10

https://vblocalhost.com/conference/presentations/cto-call-tree-overviewer-yet-another-function-call-tree-viewer/
https://vblocalhost.com/conference/presentations/cto-call-tree-overviewer-yet-another-function-call-tree-viewer/

Vol. 59Aug.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

2.2 Detecting Encryption/Decryption and Encoding/
Decoding Routines

As you no doubt know, malware authors often encrypt

or encode communications and config data to make them

difficult to detect. In some cases, the authors use existing

encryption algorithms such as AES and RC4, and in others,

they simply use xor instructions to create custom encodings.

In addition to custom encodings that explicitly use xor,

many known cryptographic algorithms, including the afore-

mentioned, also include xor instructions. Further, loop

structures are inevitably needed when cryptographically

processing data that is longer than the CPU registers. So,

CTO has a built-in command that traverses the functions

known to IDA, finds xor instructions, checks if they are

in loops, and displays the results. If a function name in

the results has not been changed from the default, it is

renamed by appending “xorloop_” so that it can easily be

found via the function name.

Figure 2 shows how to execute that command. It can be

executed from CTO via a shortcut also, but here I show how

to execute it from the CTO Function Lister menu.

First, click the dropdown menu button and select “Built-in

scripts”, then select “Find xor instructions in a loop”. It

depends on the size of the program being analyzed, but

with the sample malware (code section size of around

280KB), the command completed in around 2–3 seconds.

The results are displayed in the Output window, and it can

also filter and display only the relevant functions in CTO

Function Lister. To do this, open the dropdown menu again

and select “Preset filters” and then “xor instruction in a

loop” as shown in Figure 3.

This will result in only functions that have an xor instruction

inside a loop being listed, as Figure 4 shows. With FLIRT

Figure 2: Executing the “Find xor instructions in a loop” command Figure 3: Displaying “xor instruction in a loop”

1111

© Internet Initiative Japan Inc.

*3 FLIRT and Lumina are part of IDA’s functionality. Both can use pattern matching to detect and rename known functions. FLIRT refers to a local database, while

Lumina refers to a cloud-based database. With Lumina, IDA users push function information to the cloud first. After that, when a function with the same pattern

is found in a binary analyzed by another user, the function name on the Lumina server is applied to it.

*4 A magic value is a specific string or numerical value that is used as a marker to uniquely identify a header or footer of a certain format.

*5 FindCrypt (https://github.com/you0708/ida/tree/master/idapython_tools/findcrypt) is a third-party script for IDA Pro that uses pattern matching to detect tables and

magic values of well-known encryption and hash algorithms. Several implementations of FindCrypt exist. The one referred to here is implemented in Python and is

easy to extend, so this is the one I use.

*6 IDA Signsrch (https://sourceforge.net/projects/idasignsrch/) is a third-party plugin for IDA Pro that is used to detect cryptographic and hash algorithms in the same

way as FindCrypt. While it is similar to FindCrypt, both tools sometimes differ in scope, so more than one of them is used at times.

and Lumina*3, IDA will rename statically linked C (and other

language) library functions to an extent. As you can see, all

but the first two functions have been named. So, we need

to start by looking at the first two functions (sub_1025F0

and sub_102AB0). The aforementioned command adds the

comment “CTO-xorloop” to corresponding xor instructions,

and these are displayed in CTO Function Lister using a filter.

They are in the cmt subtrees. By clicking a line in CTO

Function Lister, you can jump to the corresponding address

in IDA’s disassembly view to inspect the surrounding code.

Looking at the code surrounding the two functions obtained

using the command above, one is a routine used to decrypt

the payload downloaded from a malicious server, and the

other is a routine used to decrypt C&C config data (host

name, IP address, etc.) that is hard-coded into the sample.

You can find key code blocks like this instantly with these

tools.

Here we looked at custom xor-based encodings as an example,

but encryption algorithms such as AES and hash algorithms

such as SHA256 and MD5 often have characteristic magic

values*4 and tables. Third-party scripts and plugins for

detecting such characteristics, such as findcrypt*5 and IDA

Signsrch*6, have been released. CTO Function Lister recognizes

the results of these as well and can filter and display results

based on them. Using these tools in combination lets you

efficiently discover encryption/decryption and encoding/

decoding routines, and quickly check the surrounding code.

Figure 4: Results of “xor instruction in a loop” and the Surrounding Code

12

Vol. 59Aug.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*7 initterm (https://learn.microsoft.com/cpp/c-runtime-library/reference/initterm-initterm-e) is a function that initializes global objects within the CRT before executing

the main function. When initterm is called within the CRT, it takes global variables as its first and second arguments, so these are relatively easy to find even if IDA

does not recognize this function. initterm executes the function pointers between the addresses specified by its two arguments in sequence. Each function pointer

is encapsulated in dynamic initializer code (https://learn.microsoft.com/cpp/c-runtime-library/crt-initialization). Within that code, the global object’s constructor is

executed, and the class instance is stored in a global variable.

2.3 Path Exploration
CTO can display paths to or from an address. Figure 5

shows the result of right-clicking an xor instruction found

using CTO Function Lister and selecting “Find the path(s)

to this node”. The results appear in a call tree graph on the

right side of the window.

Although this graph shows the relationships between each

function address and the code and data that refer to it,

this is, unfortunately, not a perfect execution path. The

reason for this is that even if a function contains a function

pointer, it is not necessarily called right away. For example,

the function pointer might be stored in a register or on

a heap chunk, with the function called much later on.

Indirect calls are often used in mechanisms like C++ vftables.

To find exactly where a function is executed, you have

to track down the class instance, find all the code that

refers to it, and find all the code that retrieves a function

pointer from the vftable and executes it. It makes the

code quite complicated. So, whenever code accesses a

function pointer, CTO extracts the address and builds a

parent-child relationship graph like this. This is still useful

enough, though.

In the example here, a function called dynamic initializer

is the first node of the path. This function is processed by

the initterm*7 function in the CRT (C-Runtime). Reading the

code reveals that this malware is written using MFC. MFC

applications must declare their main application class as a

global variable. This declaration causes initterm to call the

constructor of the main application class, encapsulated in

a dynamic initializer, and the class instance is stored in a

Figure 5: Path Exploration

1313

© Internet Initiative Japan Inc.

*8 As mentioned, Lumina uses names provided by ordinary users, so the accuracy of any given name depends on the skill of the user who created it. Thus, names are

often unreliable and should be taken only as a reference. The example here also shows an incorrect name.

*9 Class Informer is a third-party plugin for IDA Pro. It is a tool that can be used to analyze C++ RTTI (Runtime Type Information) and identify class names and the

class inheritance hierarchy (https://sourceforge.net/projects/classinformer/). RTTI analysis itself has been possible since IDA 7.0, but I still use this plugin as it

remains superior in some respects—e.g., hierarchy display, class search functionality. An improved version that can restore class information on PE32 binaries with

the 64-bit version of IDA is also available on my GitHub repository (https://github.com/herosi/classinformer-ida8). I released this because IDA began phasing out

32-bit IDA starting with 8.0 and moving to the 64-bit version only, and the original Class Informer was unable to parse PE32 on the 64-bit version of IDA.

follows certain rules to recognize the function pointer group

as belonging to that vftable. Since IDA can recognize RTTI,

a string containing “vftable” is added to the comment for

this address. So, the vftable analysis is executed when CTO

is run for the first time, and thus within CTO, sub_101030 is

already recognized as part of this vftable. So, when access to

a function belonging to the vftable occurs, CTO can connect

this function pointer as a virtual method. Figure 6 shows the

IDA screen when the Cselfmake3App vftable node (third

from the top, “??_7Cselfmake3App@@6B@”) in CTO is

clicked. IDA View-A shows a series of function pointers of

the vftable. We can see that sub_101030 is located at an

offset of 0x50 from the beginning of it. Incidentally, in 32-

bit MFC main application classes, there is a virtual method

called InitInstance at an offset of 0x50 of the vftable.

Hence, sub_101030 is InitInstance.

global variable. The function name displayed in the panel

is automatically assigned by Lumina*8, and clearly the

part of the name following “for” is wrong. On the other

hand, the path shown by CTO indicates there is access

to a vftable with the class name Cselfmake3App in the

constructor code. It can also be confirmed from the class

inheritance hierarchy, which can be obtained from Class

Informer*9, that this class inherits the CWinApp class.

These facts make it clear that Cselfmake3App is the main

application class of this malware..

Next, Cselfmake3App’s vftable connects to a function called

sub_101030. CTO extracts and caches access to global

variables that exist within functions. In particular, if it finds

the string “vftable” or “vtable” at the beginning of a variable

name or at the end of the comment attached to its address,

it treats the global variable as a vftable, parses the table, and

Figure 6: MFC Main Application Class vftable and InitInstance Function

14

Vol. 59Aug.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

*10 The following URL describes the methods that can be overridden and methods that must be overridden when deriving an application class from CWinApp. Only

InitInstance is required (https://learn.microsoft.com/cpp/mfc/overridable-cwinapp-member-functions).

*11 Cross-references, also known as xrefs, are one of IDA’s key features. This feature lists code and data referring to a specific address. There are two types: xrefs

from and xrefs to. IDA can display and use both, and they are thus collectively called cross-references. CTO also uses cross-references to create parent-child

relationships.

Once the MFC application has processed the main application

class constructor within the CRT, as described above, it

executes several methods such as InitInstance and Run

within the WinMain function (specifically, AfxWinMain). In

particular, according to the MFC application document, you

must override the InitInstance function*10, so in many cases,

this is effectively the malware’s main function. The malware

we are looking at here also calls InitInstance (sub_101030),

and it is easy to see that the routine (sub_102AB0) to decod

the malware config is called from the function by using the

CTO call tree graph.

Another feature of CTO’s path exploration is the ability to

create paths even for global variables (including strings) as

long as you have a cross-reference*11. IDA also has a feature

called Proximity View (or Browser), but it can only be used

for functions. This is one advantage of using CTO.

Note that in order to use the CTO Function Lister features as

described here, you first need to run CTO.

2.4 Detecting std::string / std::wstring
A lot of malware written in C++ uses std::string and

std::wstring for string manipulation. The constructors and

some methods of these classes are expanded inline, which

can make it hard to determine that these classes are being

used at first glance. But because the code that initializes

the class layout uses a distinctive initial value, they can be

detected with a few simple pattern matching albeit with a

few false positives.

These classes can be found by selecting “Built-in scripts”,

“Find notable instructions” from the CTO Function Lister

drop-down menu introduced earlier. You can also select

“Preset filters”, “Notable instruction” from the drop-down

menu to filter the results of this command.

As an example, we’ll look at std::string as used in the code

that parses the config data decoded by the malware. Figure

7 shows the initialization code for std::string detected by

CTO. In the first red box in the figure, the stack variable is

Figure 7: Detecting std::string

1515

© Internet Initiative Japan Inc.

*12 GCC (Global Cybersecurity Camp) (https://gcc.ac/) is a training program for students selected from eight, mainly Asian, countries (as of February 2023). GCC

2023 was the fifth such camp and was held in Singapore in February, and we presented there on the content in this chapter (https://gcc.ac/gcc_2023/lectures/#re-

verse-engineering-malware-written-in- c-with-ida-and-semi-automated-scripts). Hoping to contribute to the industry, IIJ has continued to provide training at this

event since its inception.

initialized with the immediate value 0xf. This is part of the

initialization code for std::string that has been used in Visual

Studio for many years. Two instructions below (second red

box) is the code that initializes the beginning of the buffer

(position -0x14 from the address initialized with 0xf above)

with a 1-byte NULL character. When these instructions

appear in a set like this, I consider this a use of std::string

and apply that structure.

The class layout of std::string is undocumented, and we

have determined there to be several patterns depending on

which version of Visual Studio is used. On the other hand,

I found the malware we are looking at here was compiled

using Visual Studio 2008. So, loading the appropriate structure

for that version and applying it to the top of the std::string

instance on the stack results in a nice, clean recognition of

std::string as shown in Figure 8.

2.5 CTO / CTO Function Lister in Practice
At GCC 2023 Singapore*12 in February 2023, my colleague

and I delivered a training course on malware analysis using

the IDA plugins discussed here. At the end, we had people

randomly form teams of four to six and presented them with

characteristic functions and code obtained from the

malware sample discussed here in CTF format, and asked

them to analyze the malware in some game-like exercises.

While the participants were students that had been specially

selected from various countries, many of them had no

experience with IDA or reverse engineering, so we had

Figure 8: Applying the Structure to std::string and Recognizing Member Variables

16

Vol. 59Aug.2023

2. Focused Research (1)

© Internet Initiative Japan Inc.

to give them a brief lecture before starting the CTF

exercise. Yet by using techniques like those presented

here to save time, the best teams were able to finish

most of the malware analysis in around an hour and a

half. Over two-thirds of the teams got through most of

the important parts in around three hours. This exercise

was solely about reverse engineering, so we did not give

the teams the executable file itself. They only received

an IDA database with the file loaded in. What the malware

does is simple, so it is easy to get an overall idea of

what’s happening under the hood once it is executed,

but I deliberately made things harder for the participants

because the ability to properly dissect malware by reading

the code is also crucial. Even under these conditions, the

students used the tools and techniques presented to flesh

out their understanding, and it was exciting to see them

develop their skills so quickly.

2.6 Final Thoughts
Aside from what I have described here, CTO and CTO

Function Lister also implement a range of features

that I needed based on past malware analysis. I plan to

continue implementing new ideas, such as automation,

going forward. I hope these tools prove useful in your

malware analysis endeavors.

Hiroshi Suzuki

Malware & Forensic Analyst, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
As a member of IIJ-SECT (IIJ’s CSIRT), Mr. Suzuki is engaged in internal and customer incident response. He is primarily a malware
analyst and forensic investigator. Drawing on the insight and knowledge from this work, he has spoken at international conferences
including Black Hat (USA, Europe, Asia), Virus Bulletin, and FIRST TC, as well as at a range of domestic organizations including Japan’s
National Center of Incident Readiness and Strategy for Cybersecurity (NISC), the Ministry of Internal Affairs and Communications, the
Ministry of Justice, IPA, and the National Institute of Advanced Industrial Science and Technology (AIST). He also delivers training
courses for experts and students at domestic and international conferences and training programs, including Black Hat USA, FIRST (Annual,
TC), Global Cybersecurity Camp, MWS, Japan’s National Security Camp, and Cyber Colosseo. He was the first Japanese trainer to be
selected for Black Hat USA, where he has given trainings on incident response using forensic investigation and malware analysis. He has
dedicated over 17 years to these areas.

1717

	2.	Focused Research (1)
	2.1	Startup and Initial Windows
	2.2	Detecting Encryption/Decryption and Encoding/Decoding Routines
	2.3	Path Exploration
	2.4	Detecting std::string / std::wstring
	2.5	CTO / CTO Function Lister in Practice
	2.6	Final Thoughts

