10

2. Focused Research (1)

Malware Analysis with CTO and CTO Function Lister

At the Virus Bulletin conference in 2021 (VB2021 localhost),
| presented tools called CTO and CTO Function Lister™'. | have
continued to improve the tools since then by adding new
functionality. In this article, | explain what sort of malware
analysis tasks these tools are applicable to, along with an
in-the-wild malware sample.

The malware sample | use here is selfmake3, which downloads
and executes a RAT called SpiderPig, and it has been used

in targeted attacks. The SHA256 hash value appears below.

7DA969010A55919AA66ED97A2D2D6D6ARBE3D8DC6151EEB6CEBCI5E4FO6D4553

2.1 Startup and Initial Windows

Both CTO and CTO Function Lister are IDA Pro*? plugins.
They can be launched from Plugins in the Edit menu,
toolbar buttons, or shortcut keys. In Figure 1, you will
see icons that look like a middle-aged man on the far
right of the IDA window toolbar. These are the CTO and
CTO Function Lister icons. When clicked, CTO Function
Lister appears on the left side of the window, and CTO
on the right. The CTO tool is mainly used for visualizing
function call parent-child relationships. The main purpose
of CTO Function Lister is to extract and retain a list of
functions and notable characteristics of each function,
and to search for the information via filters. In the figure,
you can see that each tool is synchronized with the
address of the “ WinMain” function (more precisely, the
MFC AfxWinMain function) displayed in IDA’s disassembly
view (IDA View-A) and is displaying information for that

address.
Q0 S
Fle € Jump Sech View Debusow Optiss Windows Hep
HH e NNe Y 3 E @O At # %X > DO i - S B[00]
N] =l 100 11 e - BRI o Function Coter JERNIH NI T T N ¢ v
10 wbeary funcson Il Reguiar cored 111 External syrbol Ml Lursra furction
7 Functors 3] 8 cornamus B Hex View:1 a @ Stucares [x] S S5 prowy [x] S =
Name. Address CRefs BBs o & x|@co a6 x
> b thoceo W o 9
> CreateStdhccessibleObject 1402 1 1
> UestbiomObjct wose 2 1
delslosdielel 08 140388 1 37
v WeMsin@16 wer 1 % e
> stract offsets.
> pacents
v childeen
call JafGesModuieState., 140651

_setmbep 1502
all ThbTemlocalDaC.. 14063
all ARCiticTemDeY... 1403
imp TETReleneDOY... 146
all AHGATHEIBOVG.. 146d
Gl 2AhGeModuastate... 14064
all MWEINROCYEP... 14kt

hinstances dwoed ptr &
horevinstances dword pte OCH
lpcediines dwocd ptr 100
nShouCeds dword ptr 140

edi, edl

al 141007
al 141018
al 14101

all 141028
aall AWTemOOVGL. 141024

fgere wow 2 2 |
setveot w13
> foetcos w2 28

x - Oreec O
4, Grach overvien a8 x

void)

; AfxSethodulestate(void)

3
[ebpelecudiine] ; mechar_t *
[ebpéhrevinstance] ; HINSTAICE
[ebpshinstance] 5 NINSTAE

100,008 (562,-41) (87,0} 00940301 00140FS2: WANMain(x,x,X,x) (Synchronized wich Hex View-1)

[Bomx

100,094 (1415,-363) (33,156) =1.0.
e

CTO Function Lister <class "PyQs.Qeiidgets.Quidget’>
Reloaded CTO Function Lister.

Launching CTO (Call Tree Overviewer) ...

For the first execution, CTO will aaslyze a1l functicas to build the call tree. Plesse wait for a whtle.
get data fros glesal varissle

CT0 <class ‘PyQss.Qtwidgets.Coplitter>

Launched €10,

_Then press M’ to see the help after setting focus to the widget.

W: idle Do Disk: 3068

e H ase I

~eo® e

Figure 1: The CTO and CTO Function Lister Launch Buttons and Display Panels

*1 The presentation given at VB2021 localhost is available at the following URL. CTO (Call Tree Overviewer) yet another function call tree viewer (https://vblocalhost.

com/conference/presentations/cto-call-tree-overviewer-yet-another-function-call-tree-viewer/). CTO and CTO Function Lister are also published on my GitHub repository

(https://github.com/herosi/CTO).

*2 IDA Pro (https://hex-rays.com/ida-pro/) is a disassembler and decompiler, essential tools for malware analysts. CTO and CTO Function Lister were written using

the IDAPython API.

© Internet Initiative Japan Inc.

https://vblocalhost.com/conference/presentations/cto-call-tree-overviewer-yet-another-function-call-tree-viewer/
https://vblocalhost.com/conference/presentations/cto-call-tree-overviewer-yet-another-function-call-tree-viewer/

2.2 Detecting Encryption/Decryption and Encoding/
Decoding Routines

As you no doubt know, malware authors often encrypt
or encode communications and config data to make them
difficult to detect. In some cases, the authors use existing
encryption algorithms such as AES and RC4, and in others,
they simply use xor instructions to create custom encodings.
In addition to custom encodings that explicitly use xor,
many known cryptographic algorithms, including the afore-
mentioned, also include xor instructions. Further, loop
structures are inevitably needed when cryptographically
processing data that is longer than the CPU registers. So,
CTO has a built-in command that traverses the functions
known to IDA, finds xor instructions, checks if they are
in loops, and displays the results. If a function name in
the results has not been changed from the default, it is

”

renamed by appending “xorloop_" so that it can easily be

found via the function name.

0 1DA - mabware1.i64 (7 559 3980
Fle Ed® Jump Search \View Debugger Opticns Windows

‘#Hhieroa- "“n«&l[ﬂ' W.

amnﬁrmlmmlmmlmlmw

¥ Punctens B2 0 cornmnuste B
Neene
v Functions
v xorecp_1_sub_1025F0
> struct_offsets
v cmt
xor [ecx] exx; CTO-xordocp
v xordcop_1_sub 102480
> struce_offsets
v cmt
o df, byte 1592 edif: CROworicop |
_memche
strlen
_local_unwindd
strchr
—strgteldi2)
S110_0UTPUT
streat

vVvvYvvwvw

xIE] !.-ro-m
I A Expendal

Find notable instructices
Find notable constants
Update cache

Update cache partially
Update cache for comments
Show help

Figure 2: Executing the “Find xor instructions in a loop” command

[IRV:: 59

2. Focused Research (1)

Figure 2 shows how to execute that command. It can be
executed from CTO via a shortcut also, but here | show how
to execute it from the CTO Function Lister menu.

First, click the dropdown menu button and select “Built-in
scripts”, then select “Find xor instructions in a loop”. It
depends on the size of the program being analyzed, but
with the sample malware (code section size of around
280KB), the command completed in around 2-3 seconds.

The results are displayed in the Output window, and it can
also filter and display only the relevant functions in CTO
Function Lister. To do this, open the dropdown menu again
and select “Preset filters” and then “xor instruction in a

loop” as shown in Figure 3.

This will result in only functions that have an xor instruction
inside a loop being listed, as Figure 4 shows. With FLIRT

W DA - mabwace 1564 55
Fle Edt Jump Search View Debugger Opticns Windows Hep
dﬂ L Al T R STV RS ﬁ. -t:S

v Fuacticas
v xoroop, 1 sub, WSF0
> struct offeets
v omt
xer [ea] exg CTO-xedotp
v xorkoop, 1sub WAL
> struct offsets
v emt

€+ vitables (non-standwd vitable)
Possitle Co » vitable access 00 185
Possitle Co « vitable access on 264

notable comat value
otable nssrkhos
ootable maem
SRS
findcryptpy

¢ fndjuddpy

[&] ovout DA Signuach
;’fﬁ-"i'." ;ng;{a “*“""'ﬂ‘

e

Figure 3: Displaying “xor instruction in a loop”

© Internet Initiative Japan Inc.

11

12

and Lumina“®, IDA will rename statically linked C (and other
language) library functions to an extent. As you can see, all
but the first two functions have been named. So, we need
to start by looking at the first two functions (sub_1025FO0
and sub_102ABO0). The aforementioned command adds the
comment “CTO-xorloop” to corresponding xor instructions,
and these are displayed in CTO Function Lister using a filter.
They are in the cmt subtrees. By clicking a line in CTO
Function Lister, you can jump to the corresponding address
in IDA’s disassembly view to inspect the surrounding code.

Looking at the code surrounding the two functions obtained
using the command above, one is a routine used to decrypt
the payload downloaded from a malicious server, and the
other is a routine used to decrypt C&C config data (host

name, IP address, etc.) that is hard-coded into the sample.
You can find key code blocks like this instantly with these
tools.

Here we looked at custom xor-based encodings as an example,
but encryption algorithms such as AES and hash algorithms
such as SHA256 and MD5 often have characteristic magic
values™ and tables. Third-party scripts and plugins for
detecting such characteristics, such as findcrypt™ and IDA
Signsrch™®, have been released. CTO Function Lister recognizes
the results of these as well and can filter and display results
based on them. Using these tools in combination lets you
efficiently discover encryption/decryption and encoding/
decoding routines, and quickly check the surrounding code.

IDA - malware1.i64 (7da9690102559193266ed9732d2d6d6a0be3d8dc6151eebbeebe15e4f06d4553) C:\Users\localadmin\Desktop\mals 1.i64
®

Eile Edit Jump Search View Debugger Options Windows Help
BEe->-inne 8 3 E-

N ¢ -

D | dch it F - F e X P D O iocavincons
B [

T (T

© 7 Library function [l Regular function [l Instruction | Data [Unexplored | External symbol [l Lumina function

Functons @ @ crofuxctonuster IDA View-A, CTO B W (Cesnfome) He:
Name Add ’IE] IDA View-A
Vv Functions mov eax, dword_15YtAY
v xorloop_1_sub_1025F0 1025 mov [esp+494h+var_23C], ecx
> struct_offsets mov [esp+494h+var_238], edx
v ocmt mov dword_15009C, eax
xor [ecx], eax; CTO-xorloop 1027 '”:: ::;’ :;’;
X »
v x:'loop.l.;'\;bJOZAW 1029 call sub_101a10
struct_offsets xor esi, esi
Vv < test ebx, ebx
. 102d jle short loc_1020C4
> _me 09 J
> _strlen
> _local_unwind4
> _strchr 1367 jmp short loc_1020A2
> __strgtold12_| 13b8
> _SI10_OUTPUT 13d7
> _strcat 1413

X | v| CTo-xorloop ORregex (s

0 & x

A Graph overview

(™

s

loc_102DA0:

byte_1500a0[esi], cl
sub_101A10

Figure 4: Results of “xor instruction in a loop” and the Surrounding Code

*3 FLIRT and Lumina are part of IDA’s functionality. Both can use pattern matching to detect and rename known functions. FLIRT refers to a local database, while

Lumina refers to a cloud-based database. With Lumina, IDA users push function information to the cloud first. After that, when a function with the same pattern

is found in a binary analyzed by another user, the function name on the Lumina server is applied to it.

*4 A magic value is a specific string or numerical value that is used as a marker to uniquely identify a header or footer of a certain format.

*5 FindCrypt (https://github.com/you0708/ida/tree/master/idapython_tools/findcrypt) is a third-party script for IDA Pro that uses pattern matching to detect tables and

magic values of well-known encryption and hash algorithms. Several implementations of FindCrypt exist. The one referred to here is implemented in Python and is

easy to extend, so this is the one | use.

*6 IDA Signsrch (https://sourceforge.net/projects/idasignsrch/) is a third-party plugin for IDA Pro that is used to detect cryptographic and hash algorithms in the same

way as FindCrypt. While it is similar to FindCrypt, both tools sometimes differ in scope, so more than one of them is used at times.

© Internet Initiative Japan Inc.

2.3 Path Exploration
CTO can display paths to or from an address. Figure 5
shows the result of right-clicking an xor instruction found
using CTO Function Lister and selecting “Find the path(s)
to this node”. The results appear in a call tree graph on the
right side of the window.

Although this graph shows the relationships between each
function address and the code and data that refer to it,
this is, unfortunately, not a perfect execution path. The
reason for this is that even if a function contains a function
pointer, it is not necessarily called right away. For example,
the function pointer might be stored in a register or on
a heap chunk, with the function called much later on.
Indirect calls are often used in mechanisms like C+ + vftables.

To find exactly where a function is executed, you have

P 1DA - mahware1.i64 (559192266ed97324!

[IRV:: 59

2. Focused Research (1)

to track down the class instance, find all the code that
refers to it, and find all the code that retrieves a function
pointer from the vftable and executes it. It makes the
code quite complicated. So, whenever code accesses a
function pointer, CTO extracts the address and builds a
parent-child relationship graph like this. This is still useful
enough, though.

In the example here, a function called dynamic initializer
is the first node of the path. This function is processed by
the initterm™” function in the CRT (C-Runtime). Reading the
code reveals that this malware is written using MFC. MFC
applications must declare their main application class as a
global variable. This declaration causes initterm to call the
constructor of the main application class, encapsulated in
a dynamic initializer, and the class instance is stored in a

bécebc15e4{0684553) C:
File Edit Jump Sesrch View Debugger Options Windows Help

BRle-a-ians 8 3 AT

in\Desktop 164 B

B ot - i X[D D O ot vincons devoncer | %@ B B @ ©

]l 1 e

N 1 == HHL

| BRI B ——

Libeary function [l Regular function [l Instruction [1] Data Il Unexplored (1] External symbol [l Lumina function

[l Functons 8 crormcsontister B mAViewa, 10, CTO_102d06 B §® [class informer] (S exview-1 6 (A swuctures £ (F] £ums 8 mports B @ exots B

Nome l[@ DA View-A

os x| 8 ao B @ CTo_102406 [X]

Vv Functions
v xorloop_1_sub_1025F0
> struct_offsets

var:2a3- word p.tr -243h
var_24l= byte pte -241h
var_24@= dword ptr -248h

v cmt var_23C= dword ptr -23Ch
var_238= dword ptr -238h
var_234= dword ptr -234h
var_22E= dword ptr -22th

xor [ecx] eax; CTO-xorloop
v xorloop_1_sub_102480
> struce_offsets
v cmt

Find the path(s) from this node
Find the path(s) from/to this node
Find the path(s) from this node to ... (extremely slow)

The main application class initializer

I dynamic_initializer for g ItemGenerationSystem [I
[2

dd offset sub 101039

Jtinstance method

=3

X ¥ CTO-xeclocp
O Find the path(s) to this node from ... (extremely slow)
A Graph ovenview Find the path(s) from this node to ... (tracing til libs and APIs) (very slow)
— pr— Find the path(s) to this node from ... (tracing til libs and APIs) (very slow)

5 _unwind { // SEH_l1e2a8@
push OFFFFFFFEh

push offset SEH_102480
mov eax, large fs:@
push eax

sub esp, 474h

; FUNCTION CHUNK AT .text:@2103DB0 SIZE 00000026 BYTES)
; FUNCTION CHUNK AT .text:@0143A20 SIZE ©00008BD BYTES|

call xorloop 1 _sub_102ABe)

100.00% (750,159€) (477,€) CCOOLEBO 00102R20: xorloc (Synchronized wi 100.00% (-50,-€3) (2,0) =1.0

Figure 5: Path Exploration

*7 initterm (https://learn.microsoft.com/cpp/c-runtime-library/reference/initterm-initterm-e) is a function that initializes global objects within the CRT before executing

the main function. When initterm is called within the CRT, it takes global variables as its first and second arguments, so these are relatively easy to find even if IDA

does not recognize this function. initterm executes the function pointers between the addresses specified by its two arguments in sequence. Each function pointer

is encapsulated in dynamic initializer code (https://learn.microsoft.com/cpp/c-runtime-library/crt-initialization). Within that code, the global object’s constructor is

executed, and the class instance is stored in a global variable.

© Internet Initiative Japan Inc.

13

14

global variable. The function name displayed in the panel
is automatically assigned by Lumina®, and clearly the
part of the name following “for” is wrong. On the other
hand, the path shown by CTO indicates there is access
to a vftable with the class name Cselfmake3App in the
constructor code. It can also be confirmed from the class
inheritance hierarchy, which can be obtained from Class
Informer™, that this class inherits the CWinApp class.
These facts make it clear that Cselfmake3App is the main
application class of this malware..

Next, Cselfmake3App’s vftable connects to a function called
sub 101030. CTO extracts and caches access to global
variables that exist within functions. In particular, if it finds
the string “vftable” or “vtable” at the beginning of a variable
name or at the end of the comment attached to its address,

it treats the global variable as a vftable, parses the table, and

follows certain rules to recognize the function pointer group
as belonging to that vftable. Since IDA can recognize RTTI,
a string containing “vftable” is added to the comment for
this address. So, the vftable analysis is executed when CTO
is run for the first time, and thus within CTO, sub_101030 is
already recognized as part of this vftable. So, when access to
a function belonging to the vftable occurs, CTO can connect
this function pointer as a virtual method. Figure 6 shows the
IDA screen when the Cselfmake3App vftable node (third
from the top, “??_7Cselfmake3App@@6B@”) in CTO is
clicked. IDA View-A shows a series of function pointers of
the vftable. We can see that sub 101030 is located at an
offset of Ox50 from the beginning of it. Incidentally, in 32-
bit MFC main application classes, there is a virtual method
called Initinstance at an offset of Ox50 of the vftable.

Hence, sub 101030 is InitInstance.

10A Vien-A o e x| 8 o

.rdata: 00140584
.rdata:0014D584 ; class Cselfmake3App: CWinApp, CWin

dd offset sub_124996

un LNA]

dd offset sub 101030
dd oTTset -Runl]

.rdata:@0814D584 dd @, offset 2? R4Cs:
rdata pol4nsac o cop pake3Aopn: . vftable'
.rdatll:0014D58C 2?2 7Cselfmake3App@E@6B@Ndd offset sub.
rdatSTeo e
: rdata:eefh3ng dd offset sub_101010
. rdata: 00140594 dd offset nullsub_3
Z .rdata: 0149598 dd offset 20nCmdMsg@
= rdata:201459C dd offset 2OnFinalRe
4 .rdata:0014h5A0 dd offset sub_124990
3 .rdata:@ol45A4 dd offset sub_124996
+ .rdata:@01405A8 dd offset sub_13EE70
.rdata:ee14 dd offset sub_13EE7@
S .rdata:ee14 :QXSO dd offset 2GetTypelil
® .rdata:eo14pssa dd offset sub_101000
® .rdata:00149588 dd offset sub_10CD12
2 .rdata:@014958C dd offset sub_1@CCCA
® .rdata:ee14psce dd offset sub_lecpec
: .rdata:001405C4 dd offset sub_1eCCD6
. .rdata:@e1495C8 dd offset sub_1eccoe
.rdata:e01495CC dd offset sub_13F1A7
: dd offset sub_124996
L
e
.
L]
L]
L]

0004BB8C 0014D858C: .rxdata:cons (Synchronized with He

® CTO_102d26 8

[dznamic initializer for 3 ItemGenerationsttem h

mov dword | 150478, offset ?? 7Cselfmake3A

4
22 7Cselfnake3App@d6

d offset sub 101@3

sub_10103¢|

call xorloop 1 sub 102AB

Initlnstance

100.00% (-50,-€3) (42,9) 3.0

Figure 6: MFC Main Application Class vftable and Initinstance Function

*8 As mentioned, Lumina uses names provided by ordinary users, so the accuracy of any given name depends on the skill of the user who created it. Thus, names are

often unreliable and should be taken only as a reference. The example here also shows an incorrect name.

*9 Class Informer is a third-party plugin for IDA Pro. It is a tool that can be used to analyze C+ + RTTI (Runtime Type Information) and identify class names and the

class inheritance hierarchy (https://sourceforge.net/projects/classinformer/). RTTI analysis itself has been possible since IDA 7.0, but | still use this plugin as it

remains superior in some respects—e.g., hierarchy display, class search functionality. An improved version that can restore class information on PE32 binaries with

the 64-bit version of IDA is also available on my GitHub repository (https://github.com/herosi/classinformer-ida8). | released this because IDA began phasing out

32-bit IDA starting with 8.0 and moving to the 64-bit version only, and the original Class Informer was unable to parse PE32 on the 64-bit version of IDA.

© Internet Initiative Japan Inc.

Once the MFC application has processed the main application
class constructor within the CRT, as described above, it
executes several methods such as Initinstance and Run
within the WinMain function (specifically, AfxWinMain). In
particular, according to the MFC application document, you
must override the InitInstance function™', so in many cases,
this is effectively the malware’s main function. The malware
we are looking at here also calls Initinstance (sub_101030),
and it is easy to see that the routine (sub_102ABO) to decod
the malware config is called from the function by using the
CTO call tree graph.

Another feature of CTO’s path exploration is the ability to
create paths even for global variables (including strings) as
long as you have a cross-reference™'. IDA also has a feature
called Proximity View (or Browser), but it can only be used
for functions. This is one advantage of using CTO.

Note that in order to use the CTO Function Lister features as
described here, you first need to run CTO.

€® IDA - mahware1.i64 (7da96901085! 24, 15

[IRV:: 59

2. Focused Research (1)

2.4 Detecting std::string / std::wstring

A lot of malware written in C+ + uses std::string and
std::wstring for string manipulation. The constructors and
some methods of these classes are expanded inline, which
can make it hard to determine that these classes are being
used at first glance. But because the code that initializes
the class layout uses a distinctive initial value, they can be
detected with a few simple pattern matching albeit with a
few false positives.

These classes can be found by selecting “Built-in scripts”,
“Find notable instructions” from the CTO Function Lister
drop-down menu introduced earlier. You can also select
“Preset filters”, “Notable instruction” from the drop-down
menu to filter the results of this command.

As an example, we’ll look at std::string as used in the code
that parses the config data decoded by the malware. Figure
7 shows the initialization code for std::string detected by
CTO. In the first red box in the figure, the stack variable is

file Edit Jump Search View Debugger Options Windows Help

=]
N EE I

1564f06d4553) CAUsers\ i o 164

ievo-mmn s) A B ddnF A X » 0O oo eboe v @ TS0

1 [L Convertto ey [| | firm=r
Library function ll Regular function [l instruction 1] Data [Unexplored [External symbol Il Lumina function
[1] Functions @ [crorunctontster B3 [3] DA View-a, [4] CTO, [5] CTO_102d26 B} 6] [Class Informer] [7] Hex View-1
Name Address |@ 3] IDA View-A
2470 I ¢ : ic_sting@DU2Sch... 101750 cp esi, ebx
> - error: 2.0 1017¢0 | 31 short loc_102040
> llength_error@std@ QUAE@XZ 0 101840
> ime_ i ios_base:fai 101880 v ¥
v xorloop_1_sub_102A80 1023b0

Vv struct_offsets
cmp dword ptr [esi+18h], 10h; NT_INST: VC++... 103db3
mov dword ptr [esi+18h], OFh; NT_INST: VC++... 103dc7
v cmt

102dc9
103d50

<

sub_103|
v struct_offsets
mov dword ptr [eax+18h], OFh; NT_INST: VC+... 103d54

T NV A e 2257 T S0 Vo D7

mov byte ptr [esp+494h+var 3E8], ©

v cmt

mov dword ptr [eax+18h], OFh; NT_INST: VC+... 103d54
22028basic_string@DU?Schar_traits@D@std@@V2Salloc... 103d70
v struct_offsets

mov dword ptr [esi+18h], OFh; NT_INST: VC++... 103d7a

v cmt

<

X ||V NTNST: ORregex (Jcs

dl, [eax]
eax

dl, dl
short loc_1020F0)|

Figure 7: Detecting std::string

*10 The following URL describes the methods that can be overridden and methods that must be overridden when deriving an application class from CWinApp. Only

Initinstance is required (https://learn.microsoft.com/cpp/mfc/overridable-cwinapp-member-functions).

*11 Cross-references, also known as xrefs, are one of IDA’s key features. This feature lists code and data referring to a specific address. There are two types: xrefs

from and xrefs to. IDA can display and use both, and they are thus collectively called cross-references. CTO also uses cross-references to create parent-child

relationships.

© Internet Initiative Japan Inc.

15

16

initialized with the immediate value Oxf. This is part of the
initialization code for std::string that has been used in Visual
Studio for many years. Two instructions below (second red
box) is the code that initializes the beginning of the buffer
(position -Ox14 from the address initialized with Oxf above)
with a 1-byte NULL character. When these instructions
appear in a set like this, | consider this a use of std::string

and apply that structure.

The class layout of std::string is undocumented, and we
have determined there to be several patterns depending on
which version of Visual Studio is used. On the other hand,
| found the malware we are looking at here was compiled
using Visual Studio 2008. So, loading the appropriate structure
for that version and applying it to the top of the std::string

IDA View-A, Stack of xorloop_1_sub_102480, CTO, CTO_102das [£J . [Class Informer] @

IDA View-A
cmp esi, ebx
j1 short loc_102DA@

instance on the stack results in a nice, clean recognition of

std::string as shown in Figure 8.

2.5 CTO / CTO Function Lister in Practice

At GCC 2023 Singapore™'? in February 2023, my colleague
and | delivered a training course on malware analysis using
the IDA plugins discussed here. At the end, we had people
randomly form teams of four to six and presented them with
characteristic functions and code obtained from the
malware sample discussed here in CTF format, and asked
them to analyze the malware in some game-like exercises.

While the participants were students that had been specially
selected from various countries, many of them had no
experience with IDA or reverse engineering, so we had

Hex View-1

B8 @

B8 Stack of xorloop_1_sub_102A80

[esp+494h+var_3EC. Myres], @Fh ;
[esp+494h+var_3EC. Mysize], @

byte ptr [esp+494h+var 3EC. Bx], @

| INST: VC++ basic_string<char> initialization

mov dl, [eax]

inc eax

test dl, di

jnz short loc_102DF@

Figure 8: Applying the Structure to std::string and Recognizing Member Variables

*12 GCC (Global Cybersecurity Camp) (https://gcc.ac/) is a training program for students selected from eight, mainly Asian, countries (as of February 2023). GCC

2023 was the fifth such camp and was held in Singapore in February, and we presented there on the content in this chapter (https://gcc.ac/gcc_2023/lectures/#re-

verse-engineering-malware-written-in- c-with-ida-and-semi-automated-scripts). Hoping to contribute to the industry, IlJ has continued to provide training at this

event since its inception.

© Internet Initiative Japan Inc.

to give them a brief lecture before starting the CTF
exercise. Yet by using techniques like those presented
here to save time, the best teams were able to finish
most of the malware analysis in around an hour and a
half. Over two-thirds of the teams got through most of
the important parts in around three hours. This exercise
was solely about reverse engineering, so we did not give
the teams the executable file itself. They only received
an IDA database with the file loaded in. What the malware
does is simple, so it is easy to get an overall idea of
what’s happening under the hood once it is executed,
but | deliberately made things harder for the participants
because the ability to properly dissect malware by reading

Hiroshi Suzuki

[IRV:: 59

2. Focused Research (1)

the code is also crucial. Even under these conditions, the
students used the tools and techniques presented to flesh
out their understanding, and it was exciting to see them

develop their skills so quickly.

2.6 Final Thoughts

Aside from what | have described here, CTO and CTO
Function Lister also implement a range of features
that | needed based on past malware analysis. | plan to
continue implementing new ideas, such as automation,
going forward. | hope these tools prove useful in your

malware analysis endeavors.

Malware & Forensic Analyst, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, I1J

As a member of IIJ-SECT (IlJ’s CSIRT), Mr. Suzuki is engaged in internal and customer incident response. He is primarily a malware
analyst and forensic investigator. Drawing on the insight and knowledge from this work, he has spoken at international conferences
including Black Hat (USA, Europe, Asia), Virus Bulletin, and FIRST TC, as well as at a range of domestic organizations including Japan’s
National Center of Incident Readiness and Strategy for Cybersecurity (NISC), the Ministry of Internal Affairs and Communications, the
Ministry of Justice, IPA, and the National Institute of Advanced Industrial Science and Technology (AIST). He also delivers training
courses for experts and students at domestic and international conferences and training programs, including Black Hat USA, FIRST (Annual,
TC), Global Cybersecurity Camp, MWS, Japan’s National Security Camp, and Cyber Colosseo. He was the first Japanese trainer to be
selected for Black Hat USA, where he has given trainings on incident response using forensic investigation and malware analysis. He has
dedicated over 17 years to these areas.

© Internet Initiative Japan Inc.

	2.	Focused Research (1)
	2.1	Startup and Initial Windows
	2.2	Detecting Encryption/Decryption and Encoding/Decoding Routines
	2.3	Path Exploration
	2.4	Detecting std::string / std::wstring
	2.5	CTO / CTO Function Lister in Practice
	2.6	Final Thoughts

