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3. Focused Research (2)

3.2 Why Implement it in Haskell?
As with my implementations of HTTP/2 and TLS 1.3, I am 

implementing QUIC and HTTP/3 in the Haskell programming 

language. My reasons for choosing Haskell are as follows.

• Rich data types allow for concise problem repre-

sentation, and strong type checking can detect 

many coding errors.

• Lightweight threads are provided as standard, 

enabling threaded programming with better code 

readability than with event-driven programming 

and a small overhead when switching and creat-

ing threads, where state management tends to 

be cumbersome (any reference to threads below 

means lightweight threads).

• Many data types are immutable and can be safely 

shared between threads. 

• STM (Software Transactional Memory) is provided 

as standard, enabling threaded programming without 

deadlocks.

Most of the QUIC implementations by other teams use 

event-driven programming, whereas I use threaded pro-

gramming. I feel that threaded programming not only 

improves code readability but also allows me to test 

specifications from a different perspective than other 

implementers.

Below, I describe specific implementation points.

One of IIJ’s goals is to contribute to the development of 

the Internet, and one way our lab does this is through its 

involvement in standardizing new protocols. For years, we 

have been helping to develop more complete specifications. 

Our work involves discussing new protocol specifications, 

implementing those specifications, and testing interopera-

bility with other implementations.

Since 2013, I have participated in the standardization of 

HTTP/2 and TLS 1.3. Over the last two and a half years, 

I have been involved in the standardization of QUIC and 

HTTP/3, which are closely related to these two protocols. In 

this report, I explain how I implemented QUIC and HTTP/3.

3.1 QUIC and HTTP/3
QUIC is a new transport protocol that uses UDP. It is 

defined as a large specification incorporating the following 

features.

• Reliability, flow control, and congestion control 

provided by TCP

• Multiplexing with asynchronous streams derived 

from HTTP/2 (stream fragmentation and reassembly)

• Security features provided by TLS 1.3 (key exchange, 

authentication of peers, encryption of data)

The basic units in QUIC are called packets. A packet can 

contain multiple units of data called frames. There are 

several types of frames: e.g., application data is stored in 

STREAM frames, and ACK (acknowledgement) infor-

mation is stored in ACK frames. HTTP as defined in the 

QUIC protocol is called HTTP/3.

Implementing QUIC in Haskell
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3.3 QUIC Streams and Connections
QUIC divides communications into streams in order to 

multiplex within a single connection. HTTP/2 uses streams 

for the same purpose, but while HTTP/2 streams can only 

carry HTTP requests and responses, QUIC streams can 

carry data for any application.

After working on a QUIC API for quite a while, I discovered 

the following abstractions.

• The role of QUIC connections corresponds to that 

of network I/O management handled by the OS.

• QUIC streams correspond to TCP connections.

TCP connections here means the simplest form of TCP 

connections that only exchange one piece content, as in 

HTTP/1.0. Viewing things from this angle, I realized that 

streams can be controlled with an API that mimics the 

socket API. Part of the current API appears below.

Haskell type annotations are separated by a right arrow. 

The return type is on the far right. The other parts of the 

type signature are the argument types. When IO appears 

to the left of the type, it means the method has side 

effects, such as input and output operations. When IO 

does not appear, the data type is immutable and has no 

side effects. () denotes that there is no return value, and 

ByteString is, of course, the byte string type. So, IO () 

means that there is no meaningful return value and that 

only the function’s side effects are of interest.

When implementing an HTTP/1.0 server in Haskell, the 

usual convention is to use a synchronous approach of 

starting one thread for each TCP connection from a client, 

reading a request, writing a response, and then terminating 

the thread. In HTTP/2, you need to manage multiple threads 

to enable multiplexing. When implementing HTTP/3, the 

QUIC library handles this multiplexing. So, when using the 

above API, it is possible to use the conventional synchronous 

approach of starting one thread per stream.

3.4 Accepting Connections on a Server
The type annotation of the function that starts a server is 

as follows.

That is, run takes a server configuration and a server 

application function (a function that receives a connection 

and does some processing, including input and output) as 

arguments. The Dispatcher thread launched by this function 

opens a listening (wildcard) socket for each network 

interface. When a new connection is accepted, the threads 

that make up the connection are started (see Section 3.5).

-- Abstract data type representing a stream

data Stream

-- Function for creating streams

stream :: Connection -> IO Stream

-- Function for closing streams

closeStream :: Stream -> IO () 

-- Function that accepts streams created by peers

acceptStream :: Connection -> IO Stream

-- Function that receives data from streams

recvStream :: Stream -> Int -> IO ByteString

-- Function for sending data to streams

sendStream :: Stream -> ByteString -> IO () 

run :: ServerConfig -> (Connection -> IO ()) -> IO ()
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There are six types of QUIC packets. The body of Initial 

packets, 0-RTT packets, Handshake packets, and 1-RTT 

packets is encrypted and the header is protected. The 

body of Version Negotiation packets and Retry packets 

is not encrypted, nor is the header protected. To analyze 

these packets in a consistent, unified manner, I devised a 

method of dividing the analysis into two stages.

(1) Parse parts of the header that are not protected 

(determine the packet type etc.)

(2) Decrypt encrypted text and remove header 

protection

Stage (1) is performed by the Dispatcher thread. The 

Dispatcher thread looks at the results of the analysis in 

(1) and creates a new connection if it is an Initial packet, 

or performs the migration process if it is an appropriate 

1-RTT packet (see Section 3.9). The specification does not 

allow the server to accept Version Negotiation packets or 

Retry packets, so these are simply discarded.

Stage (1) is also performed by the Reader thread described 

below, and (2) is performed by the Receiver thread de-

scribed below. The two-stage analysis idea has yielded a 

common data structure for the header information, resulting 

in more concise code than in earlier implementations.

3.5 Threads that Make up a Connection
When starting a new connection, the Dispatcher thread 

starts the main thread for that connection and asks it to 

create the connection. The main thread starts a group of 

threads that make up the connection, as shown in Figure 1, 

and waits for them to finish.

When the connection is created, a connected socket is 

created. So packets for this connection are read by the 

Reader thread, not the Dispatcher thread. The Reader 

performs the packet analysis in (1) above, and passes the 

parsed header information, protected header, and 

encrypted body to the Receiver thread through the queue 

(RecvQ).

The Receiver thread performs (2) above, extracts the 

packet’s frames, and processes each of them. STREAM 

frames are reassembled and passed to the Server thread 

through the queue (InputQ). When it receives an ACK 

frame, the Receiver thread deletes the corresponding 

information from the information-retransmission container 

(SentPackets) described in Section 3.10.

The Server thread is what invokes the server application 

function. The output is sent to the Sender thread through 

a queue (OutputQ). The Server thread is responsible for 

Callback configuration Key installation

Packet input

Packets deleted

Data resent

Receiver

InputQ OutputQ

RecvQ

TLS
handshaker

Server

Sender Resender

Reader Connected
socket

SentPacketsPacket output

Figure 1: Threads that Make up a Connection
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launching the TLS handshaker thread to perform key 

exchange and synchronize key availability timing before 

launching the application.

The Server thread is what invokes the server application 

function. The output is sent to the Sender thread through 

a queue (OutputQ). The Server thread is responsible for 

launching the TLS handshaker thread to perform key 

exchange and synchronize key availability timing before 

launching the application.

When the Resender thread detects a packet loss, it retrieves 

the relevant information from the information-retransmission 

container and resends it by putting it into the OutputQ.

STM is used for the queues and other data sharing, so 

these threads do not deadlock. If any one thread causes 

a fatal error, the entire thread group terminates. When this 

happens, resources are properly released and no leaks 

occur.

3.6 Connected Sockets
TCP lets you generate a connected socket from a wildcard 

socket using the accept() system call. The accept() 

system call cannot be used with UDP, however.

For example, suppose your server has a wildcard socket 

{UDP, 192.0.2.1, 443, *, *} and a client requesting a 

connection on 203.0.113.1:3456. The connected socket 

you want to generate is {UDP, 192.0.2.1, 443, 203.0.113.1, 

3456}. A simple way to do this is as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR 

option.

(2) Call the bind() system call with 192.0.2.1:443.

(3) Call the connect() system call with 203.0.113.1:3456.

Unfortunately, on BSD-based OSs, (2) causes an error. 

Linux allows (2), but race conditions can occur. These 

problems can be solved as follows.

(1) Open a new UDP socket and set the SO_REUSEADDR 

option.

(2) Call the bind() system call with *:443.

(3) Call the connect() system call with 203.0.113.1:3456. 

In this case, the local address is set to 192.0.2.1.

This method works fine on many operating systems and 

does not cause race conditions. However, you need to be 

careful with privileges. Suppose that, in TCP, a process with 

root privileges creates a wildcard socket for a privileged 

port. Even if this process relinquishes root privileges 

for security reasons, the accept() system call can still be 

executed. Linux, however, requires the process to at least 

have the CAP_NET_BIND_SERVICE capability to generate a 

UDP-connected socket using the above method.
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3.7 Closing Connections
When using TCP with the socket API, a call to the close() 

system call by the application immediately returns control 

to the application, and the OS is then responsible for 

subsequently terminating TCP. The QUIC implementation 

also needs to enable this sort of control.

In my implementation, when the server (or client) application 

function terminates, all threads except the main thread 

terminate and unnecessary information is discarded. The 

main thread also starts a separate thread to handle the 

termination procedure with the minimum information needed 

to resend the CONNECTION _ CLOSE frame if need be.

In QUIC, an ACK is not returned for packets that contain a 

CONNECTION _ CLOSE frame. Once the peer has received 

a CONNECTION _ CLOSE frame, it immediately stops 

sending packets. So after sending the CONNECTION _

CLOSE frame, we wait a while to make sure that no more 

packets will arrive from the peer. If packets do arrive, this 

may indicate that the CONNECTION _ CLOSE frame has 

been lost, so the packet with the CONNECTION _ CLOSE 

frame is resent.

3.8 TLS Handshake
QUIC uses TLS 1.3 to perform handshakes to authenticate 

peers and exchange keys. TLS 1.3 messages are detached 

from the TLS record layer and stored in a simple data 

format in CRYPTO frames.

Figure 2 illustrates a full handshake in QUIC.

The client generates Initial keys based on the randomly 

generated connection ID. The TLS 1.3 ClientHello message 

is put into a CRYPTO frame, which is then put into the 

Initial packet, which is encrypted using the Initial key and 

sent. Note that privacy is not protected because Initial 

keys can also be generated on intermediate devices.

Upon receiving this, the server generates the Initial key 

and decrypts the Initial packet. Next, it generates the 

Handshake key and 1-RTT key based on the retrieved 

ClientHello. It then puts the generated ServerHello into the 

Initial packet, encrypts it with the Initial key, and sends it. 

Other TLS messages are put into Handshake packets and 

encrypted with the Handshake key before being sent.

Figure 2: Full QUIC Handshake
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Initial packet

Finished

Handshake packet

Data
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ServerHello

Initial packet

Client Server

EncryptedExtensions

Certificate

CertificateVerify
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Handshake packet
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A client that receives these packets generates the 

Handshake key and 1-RTT key. It also puts the generated 

Finished message into a Handshake packet, encrypts this 

with the Handshake key, and sends it. At this point, 1-RTT 

packets capable of storing application data can be sent.

For the second connection, the client can generate a 0-RTT 

key from the stored information and send an Initial packet 

followed by a 0-RTT packet capable of storing application 

data encrypted with the 0-RTT key.

I tried extending the TLS library in various ways to make 

TLS 1.3 features available in QUIC. Major modifications 

were needed in order to separate the record layer, but 

I figured out that starting a dedicated TLS thread was a 

good way of reusing the TLS library without making any 

further modifications beyond that.

The callback mechanism proved effective in keeping the 

state within the scope of the TLS library so that the Client/

Server threads do not have to manage the TLS 1.3 state. 

When a key is generated, a specified callback is used to 

install the key in the shared data area. And using STM 

makes it possible for other threads to gauge when the key 

was installed.

The server-side TLS handshaker thread terminates after 

sending a NewSessionTicket message in a 1-RTT packet. 

Meanwhile, the client-side TLS handshaker thread terminates 

after a set delay upon receiving a HANDSHAKE _ DONE 

frame.

3.9 Migration
Client IP addresses and port numbers can change. 

This happens, for example, when the network interface 

switches from mobile phone to Wi-Fi, or when the port 

mapping on a NAT gateway between the client and server 

changes. Connection migration is a feature for keeping 

connections alive in situations like this.

If the client IP address or port number changes, the server 

side of my implementation will receive 1-RTT packets on 

the listening socket. By examining the connection ID, it 

can determine that a migration has occurred rather than a 

bad packet.
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*1 Reference: J. Iyengar, M. Thomson, “QUIC:A UDP-Based Multiplexed and Secure Transport”, RFC 9000, 2021

In this case, the Dispatcher thread starts the Migrator 

thread (Figure 3), which creates a new connected socket, 

starts a Reader thread that will use that socket, and performs 

path validation. For details on path validation, see RFC 

9000*1.

Until a new connected socket is created, the Dispatcher 

thread passes any packets that arrive to the Migrator 

thread, and the Migrator thread passes them to the Receiver 

thread. It also closes the old connected socket after a set 

delay, thereby terminating the old Reader thread.

We will now look at how migration is handled on the client 

side, starting with the case in which connected sockets 

are used.

(1) Detect somehow that a new preferred network 

interface is available.

(2) Call the migration API. Once a new socket is 

created and the connect() system call is called, 

the OS sets the remote address and port based 

on the call’s arguments. The routing table is then 

searched using the remote address to find the 

network interface to which the route points. The 

IP address of that network interface is chosen as 

the socket’s local address. Local ports are chosen 

randomly.

(3) Use the connected socket that was created and 

send() to send packets.

The advantage of this method is that path validation can 

be performed in step (2), and the disadvantage is that 

OS-specific methods are needed for step (1). Meanwhile, 

another option is to use wildcard sockets.

• When sendto() is called, the OS sets the remote 

address and port based on the call’s arguments. 

The routing table is also searched using the remote 

address to find the network interface to which the 

route points. The IP address of that network interface 

is chosen as the socket’s local address. The local 

port is chosen randomly when sendto() is first 

called.

The advantage of this method is that migrations happen 

automatically without the need to keep track of the preferred 

network interface or provide a special migration API. The 

disadvantages are the cost and poor performance involved 

in sending packets and the lack of an opportune time for 

path validation.

As each method has its advantages and disadvantages, 

I plan to provide both so that either can be selected via the 

settings when launching a client.

Terminates

Creates

Receiver

RecvQ

Reader Reader

Connected
socket

Connected
socket

Migrator

MigQ

Dispatcher

Listening
socket

Figure 3: Connection Migration Flow Chart
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3.10 ACK Processing Algorithmn
In QUIC, new packet numbers are used for retransmissions. 

Unlike TCP, which reuses sequence numbers when resending, 

QUIC has no ACK ambiguity problem. When a packet is 

resent, the packet number and ciphertext both change. 

For this reason, RFC 9000 refers to the “retransmission 

of information” rather than simply to the resending of 

packets.

In standard TCP, the ACK specifies the sequence number 

that should be delivered next, so it is not possible to determine 

whether other TCP segments have been delivered to the 

peer. QUIC ACK frames, meanwhile, can list packet numbers 

that have been received.

To enable the retransmission of information carried in 

packets that have been sent, an information-retransmission 

container is prepared and the information stored therein at 

time of transmission. The following three operations can 

be performed with information-retransmission containers.

• When sending, insert information with the packed 

number as the key.

• When an ACK is received, delete the information 

with the packet number as the key.

• If no ACK is returned after a set delay, retrieve 

and delete the information from the container and 

retransmit it.

A common data structure in Haskell providing this function-

ality is the PSQ (Priority Search Queue). We specify the 

packet number as the key, the transmission time as the 

priority, and the information as the value.

When I implemented the information-retransmission container 

with PSQs, I noticed that performance would drop signifi-

cantly at times. In a normal implementation, for example, say 

that ACKs are returned as follows.

That is, the implementation processes ACKs in response 

to ACKs and dynamically manages which packet numbers 

need to be ACK’d. At one point, however, Firefox Nightly 

returned the following ACKs.

ACKs in response to ACKs are not processed, so unnecessary 

packet numbers are not deleted. The specification permits 

this form of ACK. Denoting the size of the PSQ as n and 

the number of packet numbers specified in the ACK as m, 

the complexity of the entire delete operation is O(m log n). 

When m becomes large, as with the Firefox Nightly build 

I encountered, the delete operation becomes very costly.

I realized that predicates could be used to solve this problem. 

A list of packet numbers like [4,5,7,8,9], for instance, is 

represented in an ACK frame in the form of ranges like so: 

[(4,5),(7,9)]. This can be converted into a predicate as 

follows.

[0,1,2,3]

[0,1,2,3,4,5,6,7]

[0,1,2,3,4,5,6,7,8,9,10,11]

[0,1,2,3]

[4,5,6,7]

[8,9,10,11]
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*2 Reference: J. Iyengar, I. Swett, “QUIC Loss Detection and Congestion Control”, RFC 9002, 2021

*3 Reference: R. Marx, “QUIC and HTTP/3 event definitions for qlog”, Internet-Draft, 2020

*4 qvis, “Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!” (https://qvis.quictools.info/).

Haskell provides as standard a data structure called finger 

trees (FingerTree), a sequence representation that is 

easily manipulable at both ends, like a bidirectional list. 

Finger trees have an operation for splitting themselves into 

a finger tree that contains only elements matching a 

predicate and a finger tree holding the non-matching 

elements, which runs in O(n) time. So using finger trees 

and predicate-based splitting instead of PSQs, I was able 

to reduce the computational overhead when ACKs are 

received.

3.11 Reassembling Streams
QUIC packets do not span multiple IP packets. That is, 

they are not fragmented or reassembled at the IP level. 

Data within streams, on the other hand, can span multiple 

QUIC packets. So the sender needs to split the stream data 

into appropriately sized fragments, and the receiver needs 

to reassemble it.

When a STREAM frame arrives, the fragment is inserted 

into a reassembly container. Then, if there is a continuous 

set of fragments starting at the expected offset, they are 

removed and put into the recvStream queue. Hence, 

the reassembly container has insert and retrieve & delete 

operations.

In the old implementation, I used a one-way list for the 

reassembly container. Inserts and retrieve & delete opera-

tions both ran in O(n) time. When I profiled data transfers 

in a production environment, I found stream reassembly to 

be a bottleneck.

This prompted me to adopt a different data structure for the 

reassembly container: a skew heap populated with finger 

trees. Elements can be prepended or appended to a finger 

tree in O(1) time to represent a continuous series of fragments. 

Computation complexity is reduced: inserts take O(log n) 

and retrieve & delete operations take O(n) time.

3.12 Flow Control
Flow control is a mechanism whereby senders limit the volume 

of packets they send to within the bounds of what the receiver 

can handle. QUIC uses a scheme in which receivers tell 

senders how much data they can receive (credit). This 

is often conflated with congestion control, described in 

Section 3.13, but it is a separate mechanism.

In my implementation, flow control is done at the stream 

API level.

• sendStream sends data within the bounds allowed 

by the peer, and if the amount exceeds the limit, it 

waits for credit from the peer.

• recvStream assumes that the application will consume 

this data and sends credit for the amount of data 

received to the peer.

3.13 Loss Detection and Congestion Control
QUIC loss detection and congestion control are defined 

in RFC 9002*2. Loss detection uses both ACK-based and 

probe timeout-based methods. And congestion control 

uses an algorithm based on NewReno. I implemented the 

pseudocode given in the RFC faithfully in Haskell. In the 

process of doing so, I discovered, and reported, a number of 

inconsistencies in the specifications. In recognition of this, 

the name of this article’s author (Kazu Yamamoto) has been 

added to the RFC 9002 contributors list.

Loss detection and congestion control logs are exported in 

qlog format*3 and fed into the qvis*4 visualization suite to 

monitor the program’s operation and find errors.

predicate :: PlainPacket -> Bool

predicate pkt = (4 <= n && n <= 5) || (7 <= n && n <= 9)

  where

    n = packetNumber pkt
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*5 h2spec, “A conformance testing tool for HTTP/2 implementation” (https://github.com/summerwind/h2spec).

*6 h3spec, “Test tool for error cases of QUIC and HTTP/3” (https://github.com/kazu-yamamoto/h3spec).

3.14 Testing
My QUIC library and HTTP/3 library implement a variety 

of unit tests. In this section, I discuss the use of some 

noteworthy unit tests and external tests.

■ Loss detection

To test if loss detection is working correctly, I implemented 

a virtual network that relays UDP datagrams through a 

relay thread. The relay thread drops UDP datagrams based 

on given scenarios. Naturally, I have implemented tests 

that randomly drop UDP datagrams. I also comprehensively 

cover patterns involving handshake packet loss, something 

that is apt to cause problems, such as tests that drop the 

client’s first packet and tests that drop the second.

■ h3spec

Tests can easily miss error cases. For HTTP/2, h2spec*5 

is an excellent test tool for checking if servers can handle 

error cases. I realized that I could easily test error cases 

by creating hooks for the Haskell QUIC library. One of the 

hooks is shown below.

When transport parameters are created, this hook converts 

one of the parameters from one value to another. An error 

case can be created by converting to a value that causes 

an error. Based on this idea, I have released a tool called 

h3spec*6 for testing error cases against QUIC or HTTP/3 

servers. At present, it provides 32 QUIC error tests and 

16 HTTP/3 error tests. h3spec has been used to test the 

Haskell QUIC library as well as other implementations, and 

it has thus played a role in making implementations more 

stable.

■ QUIC tracker

QUIC tracker is a service that executes a range of tests on public 

servers once a day and publishes the results. I registered 

our public server for the service and found a lot of bugs. 

I was eventually able to pass all test cases except for two 

unsupported items.
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onTransportParametersCreated :: Parameters -> Parameters
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