
© Internet Initiative Japan Inc.

Meet Barry, IIJ’s Tool for Rapid Fault Resolution

3. Focused Research (2)

3.1 Background to Barry’s Deployment
To provide stable, high-quality services, IIJ must attend to a

range of operational tasks. Key among them is troubleshoot-

ing, which involves restoring service-providing systems when

they are unable to maintain a normal operating state because

of hardware or software faults. IIJ uses an internally devel-

oped operations system called Barry for troubleshooting.

Here, I describe how Barry works and what it does.

First, however, I would like to talk about how we dealt with

faults before Barry. Normally, the services we provide are

constantly monitored for any anomalies in the equipment

and functionality provided. When service anomalies arise,

an alert is generated, prompting us to take action. The first

step is to find troubleshooters capable of dealing with the

issue. At IIJ, we call this escalation. Next, the troubleshoot-

ers begin the job of restoring the service to a normal state.

The actions taken differ depending on the service, but gener-

ally the process involves the people involved communicating

with each other and using various tools to investigate and

record the issue as they work toward a solution.

This is how IIJ had been dealing with faults until now, but

this approach had its problems. So we revised our approach

and developed an operations system called Barry to facili-

tate smoother troubleshooting.

The two main problems with the previous approach were

as follows.

■ Problem 1: Finding troubleshooters and accurately

communicating the details of the issue

We need to find people quickly. We currently still use phone

calls to contact candidate troubleshooters and ask if they can

tackle the issue. The advantage of using the phone is that

we can call them continuously. Emails and other messaging

can also be used to escalate an issue, but such messages

are usually only sent to candidates when the issue arises.

With the phone, however, we can continue calling the per-

son until we reach them, so we have a higher success rate

in getting hold of the right people for the job. The flip side of

this is that the people manually making the phone calls are

tied up until the troubleshooters are found. This issue can be

addressed by using automated phone calls, but this entails

one-sided voice communication, so it can be difficult for the

person to clarify and confirm the details, and the issue of

automated calling system cost also remains. And there are

limits on how many people can be called at once.

Also with phone calls, people can mishear or fail to hear

what was said, and communicating English abbreviations

and symbols is also difficult. An advantage with email-based

escalation, however, is that these issues do not arise and it

is easy to communicate complicated information.

Based on the above, we identified the ability to call people

continuously and to accurately communicate information as

two key points. Solving these issues should speed up the

initial part of the troubleshooting process.

■ Problem 2: Reducing the load on troubleshooters

The work of dealing with faults puts a load on the trouble-

shooters in several ways. Systems can recover from some

simple faults automatically, but the faults we are talking

about here are those that require a troubleshooter with deep

knowledge of the service to tailor a response to the situa-

tion. So high-level knowledge of the service and the right

skills to address the issue are required. Other sources of

pressure on troubleshooters include the need to sometimes

respond on holidays or at night and demands for the rapid

restoration of service. And on top of the high difficulty of

dealing with faults, they need to communicate and share

information with other concerned parties.

Under these circumstances, it was often the case that

certain individuals, depending on the system, would han-

dle much of the work. But it was difficult to ascertain how

much of a skew there was in the workload. To enable trou-

bleshooters to concentrate on dealing with the issue, we

wanted to make it as easy as possible for them to perform

the peripheral tasks.

16

3. Focused Research (2)

Vol. 51July 2021

© Internet Initiative Japan Inc.

3.2 Addressing the Problems
We thus looked at using an operations system to enable a fast

response and reduce the load on troubleshooters. Adopting

an existing tool was also an option, but none of the tools

available were immediately suitable to IIJ’s own response

process, so with an eye to optimizing the internal workflow,

we decided to develop a system in-house. While this ap-

proach requires cost outlays, it also has a strong advantage

in that we can continuously improve the system as needed.

Firstly, we had the idea of building it as a smartphone app

to solve the problem of getting hold of people. The concept

was to mimic the incoming call screen and to display a text

message once the “call” had been answered, thus realizing

the advantages of both modes of communication. This si-

multaneously has the advantage of messaging, in that it is

text-based, and the advantage of phone calls, in that people

can be called continuously. It also does away with the lim-

itations of phone calls , opening the door to the notion that

we could customize the system in terms of the escalation

sequence, how many people are called at the same time,

and so on. We saw the potential flexibility to tailor the call

to the style of the operations team.

In terms of reducing workloads, we felt we needed to be

aware of what aspects of the process troubleshooters find

inconvenient, so we told several operations personnel about

the idea of using smartphones to page them and asked for

their thoughts. Many of the responses indicated that sharing

information was troublesome. The process of dealing with

faults involves understanding the details of the fault, sharing

information when implementing the response, and incident

tracking. At the time we spoke to the operations person-

nel, each operations team was using different tools to share

information in real time when implementing a response,

including IRC (Internet Relay Chat) and SaaS communica-

tion tools. Various methods were also used to record the

faults as incidents, including email and Wiki/ticket systems.

Another inconvenience was knowing that a fault has oc-

curred but being unable to tell what the response status is

when away from the PC screen. Given these points, it was

apparent that we needed to integrate information sharing

and tracking for the people to whom issues are escalated.

This is because tool ease of use has a major impact on the

efficiency of the response process. Our focus with the new

operations system was on usability, with the opinions of

troubleshooters taken into account.

3.3 Barry’s Featuresn
We started implementing the new operations system under

the name Barry. The name comes from the famous Swiss

mountain rescue dog and signifies our hope that the tool will

come to the aid of those dealing with system faults.

Barry’s features are divided into three parts: server, Web

frontend, and mobile app. The server implements core

functionality, such as escalation and incident tracking,

and exposes it as a gRPC API. The Web frontend and

mobile app use the server’s API to provide a UI (Figures 1

Figure 1: Barry’s Mobile App Screen

17

© Internet Initiative Japan Inc.

to say whether they can deal with the issue or not. Once

an affirmative answer is received, the escalation process

is complete. This is the basic mechanism, and the opera-

tions team can freely configure the server for the desired call

order, number of devices called simultaneously, ring time,

and number of retries.

There are also two patterns for initiating escalation:

automatic and manual. An escalation can be generated au-

tomatically in response to a service monitoring alert, which I

mentioned above. The system also supports manual escala-

tion so people can be called in emergencies independent of

whether an alarm is generated.

■ Feature 2: Integrated information tracking

An issue we identified was that dealing with faults was bur-

densome for troubleshooters because they were using all

sorts of tools in the process. Barry provides functionality that

integrates the entire process from escalation to incident track-

ing. In addition to the calling feature, we also implemented an

incident tracking mechanism. The tool is functionally equiva-

lent to an issue tracking system and allows people to record

details of the fault and track response status.

Specifically, each failure is deemed to be an incident, and

the operations team’s communications with each other and

updates to response status are recorded up until the issue

& 2). Conducting the entire troubleshooting process via the

mobile app would be a bit daunting at present, so we have

each part doing what it does best. We see the mobile app

as mainly being for calling people and facilitating simple

communication, and we have structured the system on the

premise that the bulk of the incident response will happen

on PC via the Web frontend.

Using smartphones as a tool makes it possible for people

to offer advice and other support in circumstances when

previously they would not have been able to tell what was

happening or be involved in the response. The mobile app is

made available internally through a mechanism for distribut-

ing apps within an organization.

I will now go through specific features we implemented in Barry.

■ Feature 1: Flexible calling

To implement the smartphone calling feature, we used

the same technology as an ordinary phone call app. When

the server is given a request to initiate escalation, it sends

a smartphone notification to the operations team for the

service on which the fault has occurred (Figure 3). Upon re-

ceiving notification that an escalation has been initiated, the

mobile app displays the incoming phone call UI. Once users

answer the call, they launch the mobile app and review the

details recorded on the server; they then reply via the app

Figure 2: Barry’s Web Frontend

18

3. Focused Research (2)

Vol. 51July 2021

© Internet Initiative Japan Inc.

is resolved. Alerts generated can be linked to incidents. This

recording of incident histories makes it possible to refer to

past examples when addressing faults.

Implementing this functionality made it possible to handle the

entire process from fault occurrence through to resolution

via a single tool. And because Barry supports both Web and

mobile app interfaces, frontline troubleshooters can view the

status and make comments even while on the move.

■ Ease-of-use considerations

The benefits of implementing functionality to integrate a

range of tools would be limited if it ultimately resulted in

lower efficiency. We therefore made ease of use a priority

with Barry’s tools.

We interviewed troubleshooters when designing the sys-

tem, and we then created mockups and asked for feedback

to ensure we were on the same page. Repeating this pro-

cess several times clarified what features were needed, and

it also gave us early feedback on usability. We created a lot

of fine-grained functionality, so here I will run through the

major features.

■ Activity history display

To make it easy to see how often a phenomenon occurs

and how much work is involved in rectifying the fault, we

implemented statistics and visualization. This feature graphs

a time series of alerts and activity for each user (Figure 4).

Displaying alerts on a timeline enables efficient analysis of

the circumstances under which faults are occurring. And

making it easy to see the operations team’s activity history

helps managers understand what is going on more accu-

rately than before.

The timeline display feature shows events in order of oc-

currence. When using Barry, users see a lot of alerts and

new incidents/comments. It’s not uncommon for users to

have multiple operations teams, and it can be difficult to

understand what is happening when many events occur at

once. The timeline feature displays events for each user in

chronological order, making it easy to keep track.

Figure 4: Graph of Alert Frequency

Figure 3: Barry’s Calling Process

 Call

Notification

Barry

Manager Lvl 2: Backup team

Lvl 1: Main response team Call repeated 3
times for this level

Call until 2
people found

Proceed to next level if
insufficient people found

Only receives
a notification

19

© Internet Initiative Japan Inc.

■ Stickers

We created emoji reactions and stickers for the incident

comments to streamline communication (Figure 5). One

problem is that expressions of gratitude and other emotional

content in the form of comments increase the amount of

information relating to an incident, making it hard to pick out

the important details. With this in mind, we implemented an

emoji reactions feature. We also created stickers like those

used on social media, making it easy to convey basic/stan-

dard informational content.

■ Avatars

Avatars can be configured for each user and operations

team. This feature is also widely used on social media ser-

vices and helps improve visibility. The purpose is to prevent

mistakes by allowing users and operations teams to freely

configure their own avatars.

■ Webhook

The available features are also designed with automation in

mind. An API is provided for everything that can be done

via the screen, so users have the option of automating via

software. Barry also has other automation features, nota-

bly webhook, which we implemented in response to user

requests. Webhooks are a way for Web applications to pro-

vide information to external systems and are widely used by

Web services and the like. Barry acts as the recipient of this

information and thus supports the receipt of alerts and es-

calation initiations. Specifically, linking to webhooks such as

Grafana makes it possible to link into existing systems with-

out additional development. We also created a command

line tool, so Barry can be used via simple scripts. We expect

these features to be used in automating the work involved

in dealing with faults.

3.4 Using Barry to Deal with Faults
Now let’s follow the system operations process with Barry

deployed.

Barry is an operations system for use within IIJ, and service

operators perform the following initial setup.

Figure 5: Example of Emoji and Stickers on the Comment Screen

20

3. Focused Research (2)

Vol. 51July 2021

© Internet Initiative Japan Inc.

1. Set Barry to be the destination for service monitor-

ing alerts

2. Define rules to say who is called and in what order

when an issue is escalated

3. Troubleshooters install the Barry mobile app on their

smartphones

With these arrangements in place, service monitoring alerts

are sent to Barry when they occur. Upon receiving an alert,

Barry saves the details, determines which operations team

to use, and escalates the issue. The escalation process in-

volves ringing people’s smartphones according to the calling

rules defined for the chosen operations team(s) until a trou-

bleshooter is found.

Users learn of the escalation when their smartphones ring

and then check why it was raised. The notification includes

details of the alert, and if they are able to deal with the

issue, users reply via the app to say they will start working

on it. The system ends the calling process at this point, and

the group is notified that responders have been selected.

The escalation feature is done with its role at this point,

and the focus shifts to the incident features that provide

integrated information tracking. The troubleshooters go

over the event based on the information in the alert and

put this information together into an incident. They then

start working on rectifying the fault, leaving comments as

they go. Information is shared within the operations team

as it is added, including notifications to the mobile app, and

people other than the designated troubleshooters can also

add comments as necessary. Additional people can also be

called on if the troubleshooters are unable to handle the

issue alone.

Once the fault has been dealt with, the incident is updated

as complete and Barry’s work is done. The information re-

corded on the incident and the escalation history are stored

in the system. A search feature is also available, so respond-

ers can refer to how similar issues were handled in the past

as they work to fix a fault.

3.5 Operations
Barry’s system is needed when dealing with faults in a range

of services, so it needs to have high availability. Naturally,

Barry itself can also fail, so it is designed and operated on

the assumption that faults will occur.

The system is structured to have three independent regions,

two of which provide redundancy for a single Barry system

(Figure 6). The remaining region runs a separate Barry sys-

tem. This is used by Barry’s operators and comes into play

when dealing with faults in Barry itself.

Figure 6: Barry System Structure

UsesUses OperatesOperates

Region A

Barry

Kubernetes

IIJ service(s)

Region B

Barry

Kubernetes

IIJ operations staff

Region C

Barry

Kubernetes

Barry operations staff

System for IIJ operations staff System for Barry operations staff

Redundancy

21

© Internet Initiative Japan Inc.

emergency version that is confirmed to be stable can also

be installed.

3.6 Deployment and Impact
We released Barry internally in July 2020. Replacing the

entire fault response system all at once would not be real-

istic, so our approach since the release has been to switch

individual services over to Barry for the teams that want it.

On the user end, there was the need to replace the mech-

anism by which alerts are sent and so forth, and this work

of switching things over is progressing with help from the

service teams. It’s quite easy to adopt Barry particularly for

newly launching services.

There are also tools created by Barry users now, so we

have a real sense that the decision to open up the API is

helping to facilitate the automation and streamlining of work

for users.

Barry enables continuous calling like phone calls while also

efficiently communicating information by sending a text

message at the same time. Automation makes it possible

to leave the simple procedure of calling people up to Barry.

And the operating structure increases parallelism in the call-

ing process, so candidates can be contacted all at once.

When phoning people one after the other in sequence, we

An independent Kubernetes cluster is run in each region,

and Barry runs atop Kubernetes. Configuring the system to

use Kubernetes’ features eliminates the need to worry about

hardware failures when running Barry.

Barry uses an external service to send notifications to

smartphones. It is implemented as a combination of multiple

external services so that a failure or delay in an external

service does not become a single point of failure (Figure 7).

The server looks at the responses of smartphones to which

notifications are sent, and if an anomaly in the notification

system is detected, Barry automatically falls back to using

automated phone calls.

In the event of a top-level domain failure, the service may

become inaccessible due to a name resolution failure, even

if Barry is operating normally. To address this, we have set

up multiple domains to ensure service access redundancy.

While a little different from system faults, we also deal with

mobile app problems. On the server side, operators can roll

back when problems occur, but they are not able to deal

with issues in the apps installed on individual devices. Fatal

errors cause the calling functionality to stop working, so

two versions of the app are distributed. Along with a normal

version of the app that is updated from time to time, an

Answer

Request

Priority notification method

Phone call

Notification method if no response to push notification is received

Request Push notification
Barry Notification

service

Calling
service

Figure 7: Fallback for Barry System Faults

22

3. Focused Research (2)

Vol. 51July 2021

© Internet Initiative Japan Inc.

experienced delays in initiating the response when only

some of the candidates were able to deal with the issue,

and we have been able to resolve this as well. One of our

tasks was to speed up the initial part of the troubleshooting

process, so the system helps with this.

There are currently 633 users and 190 operations teams.

We conducted a post-release user questionnaire about using

Barry. We asked whether frequency of use and Barry’s in-

troduction had improved the way they work, and we also

asked what users would like to see improved. I will go over

these topics below.

As to what had improved, the responses mentioned the

speeding up of the initial response and the ability to see

current status, which were tasks we had identified. Having

the system make the calls has reduced the workload, and

automating the process from alert to escalation means that

people can find out about faults happening earlier. The re-

sponses also mentioned communication. Because it is now

easier to tell what the status of the fault response is within

operations teams, people are finding it easier to coordinate

their efforts. The positive feedback on improvements flow-

ing from Barry’s introduction indicates to us that it is lending

a hand on the operations front.

Meanwhile, some people have also asked for improvements

to Barry.

One request is to simplify links with existing systems. We

have provided an API and designed Barry to be suitable for

a range of use cases, but modifications do need to be made

to existing systems in order to use Barry. Users have asked

us for a way to get started using Barry with only minimal

changes to existing operations systems. The system is

designed to work within IIJ’s own unique set of circum-

stances, so we plan to address such individual requests in a

flexible manner going forward.

Another was to address concerns about stability. As dis-

cussed, Barry is a system that is used when faults occur,

so it needs to be stable. One criterion users look at when

assessing a system for adoption is its track record in opera-

tion, but having been released not long ago, Barry lacks an

adequate track record. To ensure people can use the system

with peace of mind, a priority for us in providing Barry is to

build up this sort of stable track record ahead.

Deploying Barry internally was a major milestone for us, but

we still have work to do. We hope to contribute to maintain-

ing and enhancing the quality of IIJ services by continuing

to update the system going forward.

Yushi Nakai

Operation System Development Section, Operation Engineering Department, Infrastructure Engineering Division, IIJ
Mr. Nakai joined IIJ in 2007. He is involved in the development of services and operations systems.

23

	3.	Focused Research (2)
	3.1	Background to Barry’s Deployment
	3.2	Addressing the Problems
	3.3	Barry’s Featuresn
	3.4	Using Barry to Deal with Faults
	3.5	Operations
	3.6	Deployment and Impact

