
© Internet Initiative Japan Inc.

Query Service—The Challenge of Developing
a Flexible Managed Database Service

3. Focused Research (2)

that allows them to connect via a client to a data store and

use CRUD operations. Moreover, when it comes to non-func-

tional requirements, they want these to be met, but they do

not want to deal with them. So I saw the need for a service

that completely hides (from the user) the deployment of a

database before it is used and the design of instances in a

way that takes into consideration high database availability,

backups, security configuration, and performance. Yet these

really are features you would expect from a database service,

and I didn’t feel the query service would be offering anything

novel in that respect.

Yet there was something that really made sense to me in

what the administrators who develop and run IIJ’s services

were saying. When a service application’s execution speed

drops off, they wanted some way of just powering through

it. For developers, the standard responses when database

performance fails to improve include tuning SQL queries and

adding indexes. But when an application suddenly slows

down, a feature that sort of “magically” increases database

power without having to stop the application would be won-

derful. This is something that I certainly would have benefited

from when I was developing services, so I decided to imple-

ment this sort of magic feature into my query service. This

is something that not even Kubernetes database operators

offer, so the technical challenge it posed made it feel all the

more worthwhile and motivating for me.

One other issue came up quite often in my conversations,

which can be summarized as follows: “Data outlives sys-

tems, so we need long-term access to the database, but we

have to migrate the data every time the system is replaced.

The database itself also needs to be updated to new versions,

but no one in our team is very familiar with the process, so

we continue to use the old version as is.” I spent many years

in our system integration team providing technical support

on a lot of database migrations and version updates due to

customer system replacements, and I know firsthand how

exhausting such projects can be.

3.1 Introduction
IIJ began a Tech Challenge scheme in fiscal 2019 to provide

opportunities for engineers to breathe life into new ideas

for services and technologies they ponder on a daily basis.

My project was selected for the inaugural Tech Challenge,

and over the course of a year through September 2020, I

worked on my own to design the service specifications and

develop a prototype of the service.

The theme of my project was the development of a query

service. While deploying applications in Kubernetes contain-

ers is common practice these days, we still do not have

an optimal solution for using Kubernetes containers when

it comes to database persistence, availability, and perfor-

mance. My aim was to address these issues by developing

a query service (a managed database service) in the form of

an external service that runs alongside Kubernetes and pro-

vides the same level of flexibility as when using containers,

as well as data persistence and availability.

3.2 Key Features Developed
So I had a big development theme set for the Tech Challenge—

that of developing a query service—and while I could see

what issues I needed to solve, once I began working on the

project, I found I had to rethink specifically what features I

would be developing. I spoke to administrators who develop

and operate IIJ’s services to learn about the issues surround-

ing databases. Those conversations made a lot of sense to

me, and I identified some overlap with the issues in my ex-

isting development role. Several potential features that would

be highly useful for developers/operators came out of this,

and I set to work laying out the requirements and designing

and developing the query service.

Databases are a crucial component when developing and op-

erating services, but building and operating a database is a

heavy burden for the small teams that focus on developing

and running service applications. Developers and operators do

not want a database server. They want database functionality

24

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

I knew the query service should naturally allow users to use

the same database, and that I should aim for the hardware

and software on which the database runs to be constantly

upgraded, but I also understood that it was crucial for this

not to put a burden on the users. This is the sort of thing

Kubernetes’ rolling upgrades aim to achieve, and I think this

would be a similar feature, but I developed a completely orig-

inal implementation for the query service.

Although I had a year, the reality is that I was actually de-

veloping it entirely on my own. There was a chance it would

end up half baked if I tried building all sorts of stuff into it.

But I knew it had to have the bare minimum for modern-day

databases in terms of the non-functional requirements of high

availability and backups. In terms of what makes the query

service distinct, I wanted it to solve the issues that I and the

engineers I knew faced and, in line with the initial concept,

to provide the same or greater level of functionality as data-

bases in a Kubernetes container. So I moved forward with the

following as my development priorities.

(1) Develop features that let users control the performance

of the database without having to stop the database

(2) Develop an interface to allow (1) above to be used freely

and easily from within the application

(3) Develop flexible billing functionality that makes (1) above

easy to use

(4) Functionality that lets the system control (1) above on be-

half of the user and always provide optimal performance

(5) A service update feature to facilitate ongoing use of the

query service

Figure 1 is a conceptual overview of the features developed.

At its core, the service uses Oracle Database (we are look-

ing at supporting other databases too).

Starting in the next section, I describe the query service’s

core features, with (1) and (2) above covered in “Online

Resource Reallocation Feature”, (3) in “Per-second Billing

Feature”, (4) in “Autoscaling Feature”, and (5) in “Service

Update Feature”.

Service
Endpoint

Database

Database Cluster

Storage

Service Backend System
Delivery, backup, and other features omitted for simplicity

Resource
Controller

AutoScale
Controller

Workload
Database

Resource
Collector

MigrationJob
Controller

Automated
Patching

Configuration
Database

Billing
Database

Service
Manager

Network
Controller

Cluster
Controller

Snapshot
Executor

Figure 1: The Orchestration System Developed

25

© Internet Initiative Japan Inc.

3.2.1 Online Resource Reallocation Feature

To address the first development priority—functionality

allowing the user to freely control database performance

without stopping the database—I developed an online re-

source feature.

Setting databases up to easily allow for a distributed config-

uration to be adopted as loads increase, like with Web and

application servers, is difficult. Replication, sharding, and

configurations that sacrifice integrity are often used to fa-

cilitate scalability. The effects of such strategies are limited

to read operations, however, and they come with restric-

tions on transaction processing and so forth. Particularly

when performance issues arise with a single, large, data-

base-specific process, scalability through load balancing can

be ineffective.

A database’s multi-workload capabilities are another aspect

of its performance, and characteristically the amount of re-

sources needed by a database can vary greatly depending

on how it is used. Database processing varies greatly mainly

depending on what combination of the following is in play:

(1) SQL syntax, (2) amount of data to be processed, and (3)

number of concurrent processes.

What combination of these factors is in play changes sub-

stantially throughout the day (Table 1). For example, many

users will use a database concurrently during the day, but

each operation is small. At night, however, daily jobs are ex-

ecuted, and while only a few of these run concurrently, it is

not uncommon for any single operation to be large. Adding

to this are seasonal fluctuations and spontaneous events,

making workload even more complicated.

In traditional on-premises computing environments, data-

bases have always had the most resources allocated within

a system given that they combine different characteristics

using inelastic resources.

In the last decade, it has become commonplace to use cloud

services for computing resources. The days of people being

skeptical about running databases in the cloud are long

gone, and databases now run on cloud services seemingly

as a matter of course (this is reminiscent of today’s efforts

to run databases on Kubernetes).

The multitude of computing resources that cloud services

provide has greatly expanded users’ resource options, but

databases in the cloud do have their issues. If you build and

run a database on IaaS, for instance, just because the loca-

tion of virtual machines shifts into the cloud does not mean

the fundamental problems you face when working with an

on-premises system are solved. And a lot of the database

services that cloud vendors provide on a PaaS basis need

to be restarted when CPU resources, in particular, are real-

located. Stopping the database means stopping the entire

service, so resources reallocations cannot be executed on

a whim.

Scaling out a database with Kubernetes and Kubernetes op-

erators is also effective and has gained a lot of attention of

late (with replication, increasing the system’s overall pro-

cessing capacity is effective in the case of high-volume load

balancing). But as discussed above, scaling up is probably

more effective than scaling out when a single operation is

slow (NewSQL is also an option, but I personally don’t think

it’s quite mainstream yet). “Well then don’t write inefficient

SQL syntax

Data volume per operation

Concurrent operations

Desired performance characteristic

Most important resource

Night

Complicated

High

Few

Throughput

I/O

Simple

Low

Many

Response

CPU/memory

Day

Table 1: Characteristics of Database Operations

26

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

SQL,” I hear you cry, but I think others working in this area

will understand that this actually happens a lot in reality. I

do not mean to criticize the scale-out strategy. In fact, I like

scaling out, and while I do not mention it in this report, my

query service also supports scaling out.

But I digress. Turning back to the query service, in an ef-

fort to increase processing performance without stopping

the database, I developed an online resource reallocation

feature that abstracts the computing resources. It provides

the following functionality.

(1) CPU and I/O data throughput affects database perfor-

mance, and this feature makes available as much of this

as is needed when it is needed, without having to stop

the database.

(2) It provides an interface in SQL so that resources can be

easily reallocated from within the application that is the

source of the resource request.

Table 2 shows (1) expressed as a service specification.

The CPU core and I/O data throughput resources can be in-

creased or decreased separately, from the basic level up to

the maximum spec. The change in resources happens within

a few seconds, as I will discuss, and this is immediately

reflected in the billing information.

One characteristic of (2) is that the online resources fea-

ture can be used via SQL as well as an API. The online

resources feature is easy to understand even when con-

trolled manually, and I developed it so that it would be

easy to reallocate resources from the application that is

the source of the resource request, so it is easy to embed

into programs. This makes it possible to use resources in

a way not previously possible, since you can, for example,

change the number of CPUs before and after executing a

large processing operation, and it is easy for developers to

implement this (Figure 2).

Database

CPU score

Data throughput (MB/s)

No. of concurrent connections

Data area (GB)

Options

Maximum spec

ー

6

2000

300

8000

Increment

ー

1

100

Linked to CPU score

Automatically increased

1

1

100

50

50

Basic

 Fixed Variable

Resource

Figure 2: CPU Parallel Processing

Table 2: Query Service Specifications

27

© Internet Initiative Japan Inc.

The service manager, having received the request via the

external program, changes the information about the user

database in the backend system’s configuration database

and changes the user database’s billing criteria in the billing

system. It then runs the database resource manager via the

resource controller to change the user database’s CPU core

and I/O throughput configuration. Once this is done, it returns

a message saying that the configuration is complete to the

connected user session via the procedure on the user data-

base (Table 3).

I don’t have enough space to explain the program’s imple-

mentation in detail, but these processes complete within a

few seconds, so the user is able to adjust resources almost in

Next, I explain how the online resources feature works. If

we’re going to provide a paid service, then allowing users to

directly change the number of CPU cores and I/O throughput

would quickly put us out of commission. Hence, although the

service provides an interface via SQL procedures, the system

changes are not made by executing a simple program that

wraps the SQL command for making the change. Instead, the

resource reallocation request is sent to the backend system’s

service manager via an external program (Figure 3).

So the procedure used to execute a request via SQL or the

API is a simple program that takes the user request, deter-

mines on the user database whether the values are valid, and

passes the request to an external program.

Basic

Options

Charges

Fixed monthly

Per-second billing

IIJ Query Service, basic fee

Additional CPU cores

Additional data throughput

Data capacity of 51GB or more

Daytime

1

1 core

100MB/s

1GB

Billing increment

Storage

Database
Function

Service Repository

Configuration
Database

Billing
Database

Service Endpoint

Rewriting Resource
Allocation

Change Resource
Allocation

Request

Backend System

Resource
Controller

Service
Manager

External
Program

Table 3: Query Service Billing

Figure 3: Resource Reallocation Backend

28

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

real time. Although possibly an extreme example, embedding

the online resource reallocation feature into a program opens

the door to an entirely new way of using database services as

it means an application can dynamically measure the amount

of data to process and dynamically change the resource al-

location for every operation based on how much data there

is (Figure 4).

3.2.2 Per-second Billing Feature

The online resources feature makes it possible to expand and

shrink the resource allocation at any time, but it wouldn’t be

convenient if the resources billing were overly rigid. Aiming

for a flexible billing structure for the query service, I also

developed per-second resources billing for when the basic

specs (CPU cores, data throughput, etc.) are exceeded.

Figure 5 illustrates how the query service pricing is imple-

mented. CPU core counts, data throughput, and data area

that exceed the basic spec are each billed for separately.

This means users are billed only for the resources that they

use when they need them.

CPU cores

Variable charges summed at month-end,
added to fixed charges and invoiced

Variable,
per-second billing

Fixed monthly

Start of month Month-end

Basic specs fee

Data area

I/O throughput

CPU cores

Step 1

Check amount of data to be processed

3mn – under 8mn records

CPU cores: 4
I/O performance: 800MB/s

CPU cores: 2
I/O performance: 300MB/s

CPU cores: 6
I/O performance: 1200MB/s

Under 3mn records 8mn records or more

Step 2

Step 3

CPU cores: 3
I/O performance: 600MB/s

Figure 5: How Query Service Billing Works

Figure 4: Programmable Resource Control

29

© Internet Initiative Japan Inc.

If this can be combined with parallel database processing to

balance processing speed and increases in resources, then

we can keep the impact on overall charges small even as

the per-second charge rises (Figure 6). I believe that more

flexible billing functionality is what will encourage people to

use the online resources feature.

3.2.3 Autoscaling Feature

The autoscaling feature works in conjunction with the on-

line resource reallocation feature and constantly provides

optimum performance by automatically controlling the sys-

tem on behalf of the user. The online resource reallocation

feature is useful, but if someone has to make a decision to

CPU

I/O throughput

Decision interval

1 minute

1 minute

Criteria for increase Criteria for decrease

Average usage of all allocated CPU cores

over the last 5 minutes

70% or higher 65% or lower

Average usage of allocated I/O throughput

over the last 5 minutes

80% or higher 75% or lower

1 core

100MB/s

Minimum

6 cores

2000MB/s

Maximum

1 core

100MB/s

Increment/decrementResource

Service
Endpoint

Database

Database Cluster

Storage

Workload
Database

Database
Resource
Manager

user defined
auto scaling

setting

Service
Manager

Billing
Database

Configuration
Database

Run Database Resource
Manager with new settings

Collects 1-min. avg. for CPU &
I/O loads, and user defined
autoscaling settings at 1-min.
intervals

Bases decision on three elements: stats for the last 5 min., current resource settings,
and the latest user-defined autoscaling settings. If it decides to increase/decrease
the resource allocation, it passes the new resource settings to the Service Manager
and directs it to change the allocation.

Update config/billing info

Resource
Collector

AutoScale
Controller

Resource
Controller

P
ro

ce
ss

in
g

tim
e

■ Processing time
 Usage charges0

7.5

15.0

22.5

30.0

1 2 3 4 5 6

No. of resources allocated (ratio)

U
sa

ge
 c

ha
rg

es

7 8 9 10
0

16.5

33.0

49.5

66.0

Figure 6: Online Resource Reallocation Feature and Per-second Billing

Table 4: Autoscaling Feature

Figure 7: Internal Workings of the Autoscaling Feature

30

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

run it manually each time, and if it requires a complicated

setup to combine it with links to an external monitoring sys-

tem and so forth, this would greatly reduce the benefits of

having it online and diminish the appeal of the feature. To

automate system operations and facilitate the use of the

query service’s convenient features, I also developed an

autoscaling feature to automatically control the online re-

source reallocation feature (Table 4).

Figure 7 shows the internal workings of the autoscaling

feature. The autoscaling feature collects database oper-

ating status information, and in response to load levels, it

automatically allocates, via the online resource reallocation

feature, resources that affect database performance, namely

CPU cores and I/O data throughput. It works constantly to

keep resource loads within the criteria for either increasing or

shrinking the resource allocation.

Autoscaling is a very useful feature with various use cases.

One situation in which it is probably highly effective is that

of dealing with performance degradation. If you run systems,

you will come up against sudden slowdowns in database per-

formance several times a year. This can have a variety of

causes. Sometimes it suddenly slows down even though you

haven’t done anything (often, the database execution plan

has suddenly changed), and otherwise, the trigger is always

something different: a new program has just been resourced,

or the volume of data has increased substantially, or you’ve

run an event like a bargain sale, for example. When perfor-

mance degradations visit, you face a battle against many

conflicting forces.

FIrstly, it can be difficult to detect an application slowdown

via resource monitoring on the infrastructure side, meaning

that the operations team can be slow to detect what is hap-

pening. In many cases, user complaints are the trigger, and

you face a high bar in dealing with the issue from the outset.

Also, in some cases the operation causing the problem can

be stopped at the process level, but stopping is not an op-

tion in other cases, such as nighttime batch jobs that have a

significant business impact if not completed by the start of

business hours. This is a tough situation: you cannot stop the

operation, but you have to deal with it immediately. The root

cause of these slowdowns is almost always on the applica-

tion side and can include data spikes, queries running based

on improper execution plans, and searches on items with no

index. But even if you can identify the cause, dealing with it

without stopping the system is either impossible or a highly

difficult operation. And what’s worse is that these sorts of

disruptions often occur on holidays or late at night when no

one is around.

While we might not be able to fundamentally resolve perfor-

mance degradations riddled with conflicting issues like this, if

the service could provide a solution, this would make users,

operators, and developers all happy, and this is what I had in

mind when developing the autoscaling feature.

■ Measuring the Effects of Autoscaling

Deliberately causing a performance degradation to see what

effect the autoscaling feature has is difficult. Instead, I ex-

ecuted large operations on the database that were beyond

the capabilities of the current specs to see how the auto-

scaling feature would react.

In this test, I joined several tables together—including an

orders table with over 100 million records, a product mas-

ter, and a customer master—and executed a query. Since

this test makes it easy to tell what effect autoscaling has, I

cleared the shared memory buffer each time a query finished

executing.

When the query is executed, all records in the orders table

are accessed sequentially. Running queries that cause se-

quential access and flush shared memory every time result

in a large number of blocks located in storage being read

out. So the queries require a lot of I/O resources.

When initialized, the query service has the basic specs (it’s

minimum configuration), which means a modest 100MB/s

31

© Internet Initiative Japan Inc.

CPU usage all that much, the autoscaling feature began to

let go of the CPU cores again. This can be called online scal-

ing up, but with containers on Kubernetes, it looks like this

implementation has not yet reached a stable version. While

interesting to watch, this sort of CPU core catch-and-re-

lease behavior will cause performance fluctuations, so there

is certainly room to improve. Yet I don’t think it’s that big

of a problem. With this sample database, the autoscaling

feature is able to increase resources up to at most six CPU

cores and 1000MB/s, but it determines that one or two CPU

cores and I/O throughput of 900MB/s is adequate. Bumping

it up to 1000MB/s or more and increasing the CPU core

count does indeed increase performance, but the change is

not remarkably large.

of I/O throughput performance, so executing a sequential

scan of over 100 million records drives the I/O throughput

resource usage up sharply as soon as it is started (Figure

8). The autoscaling feature constantly collects and evaluates

database usage statistics, and directs the system to increase

or decrease the resource allocation. The queries used in the

test were I/O-bound, so the autoscaling feature continued to

increase I/O throughput performance only, up to 900MB/s.

What’s interesting is that when I/O throughput reaches

900MB/s, the CPU reduces the I/O wait time, so the process

becomes CPU-bound. When this happens, the service tries

to increase the degree of parallelism by increasing the CPU

core count, but since the queries were not the sort that raise

0

2

4

6

0

20

40

60

80

100

0

200

400

600

800

1000

20

0

40

60

80

100

Auto-tuning of CPU resources

C
P

U
 u

sa
ge

 (%
)

C
P

U
 c

or
es

 a
llo

ca
te

d
 I/

O
 th

ro
ug

hp
ut

 a
llo

ca
te

d
(M

B
/s

)

Time
12:30 13:30 14:3013:00 14:00

12:30 13:30 14:3013:00 14:00
Time

Auto-tuning of I/O throughput

II/
O

 th
ro

ug
hp

ut
 u

sa
ge

 (%
)

Database processing time

Resource allocation expanded, processing time falls

Automatically shrinks as load decreases

P
ro

ce
ss

 e
xe

cu
tio

n
 ti

m
e

(s
ec

on
ds

)

12:30 13:30 14:3013:00 14:00
0

50

100

150

Auto-tuning of CPU resources

C
P

U
 u

sa
ge

 (%
)

I/O
 th

ro
ug

hp
ut

us

ag
e

(%
)

I/O
 th

ro
ug

hp
ut

 a
llo

ca
te

d
(M

B
/s

)
C

P
U

 c
or

es
 a

llo
ca

te
d

Auto-tuning of I/O throughput

0
200
400
600
800

1000

20
0

40
60
80

100

12:30 13:30 14:3013:00 14:00

Time

Time

Time

0

2

4

6

0
20
40
60
80

100

12:30 13:30 14:3013:00 14:00

Automatically expands to match load

Figure 9: Example of Changes in Database Processing Time due to Autoscaling

Figure 8: Example of Changes in Resources Controlled by Autoscaling Feature

32

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

Figure 9 shows the impact on actual processing perfor-

mance. The initial increase in I/O throughput has a huge

effect, and processing time certainly does drop.

Now, what happens if the user manually sets the I/O

throughput performance value to 2000MB/s while the au-

toscaling feature is enabled? Manual settings take priority,

so the database I/O throughput performance will be set to

2000MB/s. If autoscaling is disabled, the value will stay at

2000MB/s, but with it enabled, the system will assess op-

erating conditions and shrink the resource allocation down

toward 900MB/s.

The autoscaling feature could get in the way if it always

reduces throughput to the minimum 100MB/s before then

increasing it, resulting in delays in achieving the desired per-

formance, so users are able to set a parameter range for

the autoscaling feature to work within. For example, if it is

configured to automatically adjust in the range of 2–4 CPU

cores and 500–1500MB/s, it will not drop below 500MB/s.

Users can also set autoscaling to adjust I/O throughput only

and leave CPU core count unchanged. Changes to the set-

tings can be made online, and these are reflected in the

system after a delay of one minute (for reasons to do with

the backend system).

■ Issues with Autoscaling

To ensure resources are used properly, the user cannot

change the resource decision interval, thresholds, or incre-

ment/decrement values in the backend system, but I am

looking at changing to an implementation that does allow

the user to change these values as well.

And while autoscaling may seem useful, many issues re-

main. Especially in terms of resource allocation accuracy, I

still face many difficulties from a developer standpoint.

As discussed, autoscaling operates on the basis of database

usage statistics. Yet these figures are based on past occur-

rences, and the core autoscaling functionality, the autoscale

controller, operates on the very simple assumption that past

trends will persist for a while into the future, so it is not

some sophisticated system capable of predicting future load

levels ahead of time. Also problematic is that this clear and

simple approach often deviates from desirable values im-

mediately after a time-series regime shift. In specific terms,

it sometimes increases resources despite loads being in

decline. I’m hoping to make the autoscaling features even

smarter via machine learning and so forth.

So while autoscaling has some remaining issues, I think it

is one effective means of dealing with sudden performance

degradations. In the end, since everything is controlled au-

tomatically, even if you are slow to detect an issue or it is

discovered because of customer complaints, the autoscaling

feature will be working in the meantime to expand the re-

source allocation in an attempt to maintain performance. And

the resources allocation is shrunk once the issue is resolved,

so you may not even notice it in some cases (although it will

appear in your service charges). Configuration management

and application deployments can be automated, and I think

automating system performance maintenance as well will

make system operations even easier.

3.2.4 Service Update Feature

While the query service espouses a serverless setup, it runs

in the same system environment as a normal database, so

the service platform will get old. Firstly, as the service plat-

form’s hardware ages, the incidence of mechanical failures

rises. Security holes and bugs in the OS and database soft-

ware stop being fixed because they are no longer supported

or patches are no longer being released. So service platform

renewals are crucial to continuously provide stable services.

Preparing a new query service platform is easy, but the

current user database needs to be migrated to the new plat-

form. In-place upgrades are the easiest way of dealing with

simple version updates to the database alone, but version

updates take considerable time, so lengthy service out-

ages are unavoidable. There is also the possibility of OS

33

© Internet Initiative Japan Inc.

and hardware being inadequately renewed or of separate OS/

hardware renewals being required, so this is not an efficient

way of doing things. Another way is to create a separate

instance from a backup, but this can involve changing the cli-

ent’s connection endpoint, which raises the possibility of the

work required going beyond the scope of the query service.

The query service completes all of the following in a sin-

gle process: switching over to new servers and storage,

OS version updates, database software version updates,

and upgrades to the database itself. This is similar to

Kubernetes’ rolling upgrades, but the query service does not

use anything like replication. The mechanism implemented

upgrades the entire service in a way that is faster and more

transparent to the user.

(1) No data migration required

(2) All steps fully automated, including version updates and

database switching that preserves data integrity

(3) A single click by the user will complete the entire process

(4) Takes at most 15 minutes to complete

(5) Can be run as many times as you like

(6) The query service connection endpoint does not change

after the migration

The query service is equipped with functionality to perform

the above service updates and allow continued use of the

database. The service update feature does not require data

to be migrated. Well, to be more precise, the in-use data-

base is replicated on the new service platform under the

hood, and the user does not need to think about it at all.

Data integrity is automatically handled by transferring the

transaction log.

The service update can be broadly divided into three phases.

In Phase 1, a snapshot of the user’s database is created

on the new service platform online (Figure 10). The user

does not need to create the snapshot manually. The service

keeps tabs on whether it is possible to take a snapshot and

creates one automatically when it is. Even if the user has

multiple databases, the process is performed completely in-

dependently for each database.

From Phase 2, the database is switched to the new service

platform, so the user needs to trigger the process, which

can be done at a time of the user’s choosing. Once Phase

2 is started, the service endpoint for the relevant user da-

tabase is closed (Figure 11). This determines the quiescent

point for reverting the switch. Once the quiescent point is

Database2

Snapshot / Sync

Current service platform

MigrationJob
Controller

New service platform

Service
Manager

Database1 Database2 Database3

Service
Endpoint1

Service
Endpoint2

Service
Endpoint3

User2 User3User1

(1) Maintenance started

Takes Database 2 snapshot,
deploys synchronization

(2)

Figure 10: Internal Workings of Query Service Update Feature 1

34

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

determined, the final synchronization with the snapshot on

the new service platform is done. Once the final synchroni-

zation process between databases is completed, the status

of the database on the current service platform becomes

inactive and the database goes offline, but it is not physi-

cally deleted. This means it is effectively a backup for the

service update process. Plus, it avoids the time needed to

restore from snapshot if the user rolls back the update. All

that needs to be done is to change the status to active, so

reverts happen very quickly.

The new database stands by on any processing until the

current database becomes inactive. This is to avoid a split-

brain scenario caused by both databases being active at the

same time. So it doesn’t process anything independently.

Once the current database is properly inactive, processing

resumes so that the service can continue on the new data-

base. If the database version is to be updated, this is when

it happens. The new database is also reconfigured for high

availability. In the final stage of Phase 2, route information

on the user database service endpoint is refreshed to reflect

the new service platform.

In Phase 3, the endpoint is opened once the user database

on the new service platform goes to active status (Figure

12). A notable aspect of Phase 3 is that the users connec-

tion endpoint does not change; only the route information on

the service endpoint is changed. So once the user receives

notification that everything is complete and reconnects,

they are connected to the user database on the new service

platform without having to change anything.

Current service platform New service platform

Database1 Database3

Service
Endpoint1

Service
Endpoint3

User2 User3User1

Database2

MigrationJob
Controller

Service
Endpoint2

Service
Manager

(2) Database 2 deactivated (4) Routing information refreshed (3) Database 2 activated and upgraded

(1) Closes Database 2
endpoint

Database2

Current service platform

Database2

New service platform

Database2Database1 Database3

Service
Endpoint1

Service
Endpoint2

Service
Endpoint3

User2 User3User1

(1) Opens database 2
endpoint

(3) Reconnects to Database 2

Service
Manager

MigrationJob
Controller

User notified that maintenance
is complete

(2)

Figure 12: Internal Workings of Query Service Update Feature 3

Figure 11: Internal Workings of Query Service Update Feature 2

35

© Internet Initiative Japan Inc.

place, the final delta synchronization with the new database

takes place.

The work done by the service update feature has tradition-

ally been performed as a system integration project. Figure

13 shows what it takes to do this manually. Quite the labo-

rious task. The query service automates all of this under the

hood, so service users simply need to make a single click on

the control panel.

When a switchover is executed, the service endpoint, which

is a proxy between the client and the database, is blocked.

Blocking the service endpoint eliminates the route between

the client and the database, so user sessions are completely

disconnected. Therefore, if any transactions were being

processed in any sessions, these are rolled back on the da-

tabase. This means it is best to initiate a switchover when

no transactions are being processed. Once current database

integrity is established with the service endpoint block in

Database migration as a systems integration task Query Service

Completes in
as little as 15 minutes

Check operation of applicationCheck operation of application

Procure new DB server

Design new DB server

Build new DB server

Build new database

Build new server cluster

Design data migration method

Transfer dump file
from current to new system

Export data
from current database

Check data in new database

Import data into new database

Change client connection settings

Test client connection

Run online maintenance feature

Test client connection

Transfer backup
from current to new system

Restore to new database

Upgrade new database

Take backup of current database

Figure 13: The Service Update Feature Greatly Streamlines the Platform Renewal Process

36

3. Focused Research (2)

Vol. 49Feb.2021

© Internet Initiative Japan Inc.

3.3 Conclusion
With the query service, my aim was not to develop a data-

base itself, but to develop an orchestration system designed

to make it easy for engineers to interact with databases,

and while it is a prototype, I believe it has achieved that

aim. Some readers may sense that I have a bone to pick

with Kubernetes, but I actually rather like Kubernetes, and

I would like to develop a query service using Kubernetes if

I get the chance.

The Tech Challenge was different from the normal devel-

opment routine guided by user requirements. I was able

to bring my own ideas to life, and it was a most engag-

ing and stimulating time for me as an engineer. It was a

year that brought back all the simple joys of working with

computers I had long forgotten since becoming a serious,

working-age adult.

Tsutomu Ninomiya

Technical Manager, Service Planning Office, IIJ System Cloud Division.
Mr. Ninomiya is engaged in the planning and development of cloud services as well as technology support for projects in this area. He was
originally a DWH/BI developer, and he likes SQL and parallel processing.

37

	3.	Focused Research (2)
	3.1	Introduction
	3.2	Key Features Developed
	3.2.1	Online Resource Reallocation Feature
	3.2.2	Per-second Billing Feature
	3.2.3	Autoscaling Feature
	3.2.4	Service Update Feature

	3.3	Conclusion

