
© Internet Initiative Japan Inc.

Binary Program Analysis
With No Prior Knowledge of Analysis Target

3. Focused Research (2)

3.1 Introduction
This article describes binary program analysis technology

that is assumption-free in that it requires no prior knowledge

of the analysis target, which is being developed at the IIJ

Research Laboratory.

Program analysis is a set of techniques for analyzing how

programs behave. It can be broadly divided into dynamic

analysis, whereby the program is actually run and its behav-

ior is observed, and static analysis, in which the program’s

structure is reviewed without executing it.

Examples of dynamic analysis include unit tests for checking

the integrity of program features, and fuzzing tools that feed

a program random input to test its behavior. Examples of

static analysis include optimization analysis—which seeks

to enhance runtime computational efficiency by eliminating

unnecessary code, precomputing operations, and so on—

and static type checking to ensure data type consistency

so as to avoid runtime errors caused by the program han-

dling data in unintended ways. Whether dynamic or static,

these sorts of program analysis techniques are incorporated

into integrated development environments (IDEs), helping to

streamline development and reduce bugs.

So these program analysis techniques are intended primarily

for developers. Meanwhile, you may want to analyze the be-

havior of programs (binary programs) that are already in the

wild. For instance, you may want to know how a suspected

malware program behaves or check if firmware from a third

party does anything suspicious. In such cases, the person

seeking to analyze the program will not always have access

to the source code or information on what compiler was

used to create it. Dynamic analysis is still possible here. For

example, quarantine systems that run suspected malware in

a sandboxed environment to analyze its behavior are used

in practice. But a problem with dynamic analysis is that only

the control path actually executed can be analyzed. So dy-

namic analysis can be difficult in the case of anti-analysis

malware that alters its behavior depending on the execution

environment or firmware that has a backdoor enabling it to

change its behavior according to specific input.

So to comprehensively analyze the behavior of binary pro-

grams, we need to perform static analysis in addition to

dynamic analysis. The difficulty involved in the static anal-

ysis of binary programs can depend on how much prior

knowledge you have about how the program was cre-

ated. For example, if you can deduce what compiler was

used, it may be possible to reconstruct the original source

code based on the code patterns the compiler produces.

This technique is called decompilation. If you can decom-

pile a program, you can then use existing static analysis

techniques on the reconstituted source code to analyze the

program’s behavior.

That said, you will not always have such prior knowledge

available, or know whether you can trust it if it is available.

The IIJ Research Laboratory is developing static analysis

technology that can be applied to binary programs about

which you have almost no prior knowledge, or in other

words, when the program’s origins are an enigma.

In the following sections, we discuss the difficulty of binary

program static analysis and why the difficulty can increase

depending on whether you have prior knowledge.

24

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

3.2 Binary Program Analysis
T.A program written in a language such as C/C++ (the

source code) is converted by software called a compiler into

a series of simple machine instructions a CPU can execute.

This sequence of machine instructions is encoded into byte

data according to the encoding method specified for the

CPU architecture. A program expressed as a string of byte

data like this is called binary code.

The binary code is embedded in a file with a specific format

that makes it an executable file. In addition to the binary

code, the executable also contains metadata specifying

where to position the program in memory at runtime, where

in the program to start execution from (the entry address),

and what external library functions are called during execu-

tion. In this article, we treat these sorts of executables as

binary programs. Static analysis of binary programs in the

absence of source code is called binary code analysis.

A familiar example is standard virus detection software,

which looks for malware signatures in binary code using a

database of such signatures—distinctive byte data strings

extracted from known malware. Systems that use machine

learning on other metadata contained in executable files to

detect unknown malware have also appeared in recent years.

Methods of analyzing binary code as mere byte data like

this are suitable for automatic program classification appli-

cations such as malware detection, but to learn about how

a program will behave in detail, you need to analyze it as a

program and not just as a sequence of data. In this article,

we call this binary program analysis.

With binary program analysis, you need to extract and re-

construct the program control structure from the binary

code. A disassembler (Figure 1) is the first step. As men-

tioned earlier, machine instructions are converted into byte

data according to the rules for each architecture. Doing this

in reverse—converting byte data back into machine instruc-

tions—is called disassembly.

Simple disassemblers use linear sweeping, which involves

disassembling instructions in sequence from the beginning

of the binary code. If it encounters non-program data, a

linear sweeping disassembler may not be able to correctly

disassemble the program from that point onward. Advanced

assemblers like IDA Pro, on the other hand, use recursive

descent to recursively follow direct jump instructions (a pro-

gram control instruction for which the destination address is

specified as part of the instruction) starting from the entry

address (Figure 2). Once a recursive descent disassembler

encounters an indirect jump instruction (control instruction

for which the destination address is stored in a register or

memory), it can proceed no further. This is because, in gen-

eral, the destination address of an indirect jump instruction

presents an undecidable problem for static analysis, so it is,

in theory, difficult to proceed.

Next start position?Unreachable area

MOV EAX, 12345678
・・・
JMP +20

INC EDI
・・・
CALL EAX

?

Assembly

Disassembly

mov eax, [ebx + ecx]

Machine instructions

8B 04 0B

Byte code

Figure 1: Disassembler Figure 2: Recursive Descent Disassembler

25

© Internet Initiative Japan Inc.

be able to correctly reconstruct the program structure. It has

also been reported that identifying the position of functions

can be problematic even with programs generated by a com-

piler if the preprocessing and post-processing code patterns

have been omitted due to heavy optimization*1.

Indirect jump instructions are one reason it is not possible

to recreate program structures using disassemblers alone.

Using static data analysis to statically resolve indirect jump

instruction destination addresses to the extent possible

is called control flow reconstruction. As discussed, at-

tempts to statically resolve the destination of indirect jump

instructions run up against an undecidable problem, so a

complete solution is not possible. Previous research such

as CodeSurfer/x86*2 and Jakstab*3 has used abstract inter-

pretation to seek approximate solutions to the destination

address problem.

There is one more difficulty with control flow reconstruction,

however. As discussed, programs consist of several func-

tions. If function identification is first performed to divide a

program into separate functions, intra-procedural program

analysis, which analyzes each function independently, can

be used. If you have insufficient prior knowledge to per-

form function identification accurately, you will need to use

whole program analysis. Even if function positions cannot

be identified in advance, programs are actually divided into

a number of functions. So with whole program analysis,

context-dependency must be taken into account.

Recursive descent, therefore, will result in unreachable

areas—areas that cannot be reached by direct jump instruc-

tions alone. Disassemblers like IDA Pro use various heuristics

to identify potential starting positions within these unreach-

able areas and restart the recursive-descent process. One

such heuristic is a method is function identification.

Program development generally involves breaking the pro-

gram logic into separate functional units, referred to as

functions or procedures, to enhance code reusability and

development efficiency. How parameters are passed to

functions, and the way in which return values (the result

of a function’s calculations) are received, is determined ac-

cording to the calling conventions of the CPU, operating

system, etc. When functions are compiled, the compiler

inserts the necessary preamble and post-amble code ac-

cording to the calling conventions. This processing produces

specific patterns depending on the compiler, so by finding

these patterns, you can infer the location of functions. This

type of analysis is called function identification.

The entire program can be disassembled by using function

identification to break a program into functions and then

recursively descending through each of them (Figure 3).

The use of function identification to determine the starting

position of functions is premised on the assumption that the

program was compiled according to the calling conventions.

If this assumption does not hold, the disassembler will not

*1 Andriesse2016: Andriesse, Dennis, et al. “An in-depth analysis of disassembly on full-scale x86/x64 binaries” 25th {USENIX} Security Symposium ({USENIX}

Security 16). 2016.

*2 Balakrishnan2005: Balakrishnan, G., Gruian, R., Reps, T., & Teitelbaum, T. (2005, April). CodeSurfer/x86—A platform for analyzing x86 executables. In Interna-

tional Conference on Compiler Construction (pp. 250-254). Springer, Berlin, Heidelberg.

*3 Kinder2008: Kinder, J., & Veith, H. (2008, July). Jakstab: A static analysis platform for binaries. In International Conference on Computer Aided Verification (pp.

423-427). Springer, Berlin, Heidelberg.

int f(int n) {
...
 return n;
}

push ebp
mov ebp, esp

Compiler

Preprocessing

pop ebp
ret

Post-processing

...

Figure 3: Preprocessing and Post-processing of Functions

26

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

For example, if a function is called from multiple program lo-

cations, control is transferred from each function call to the

function, and once the function’s activity is complete, con-

trol returns to the return point. After control has returned, if

you want to refer to what the program state was before the

function call, the call and return paths must match. This depen-

dence of the analysis on paths is called context-dependency.

If this context-dependency is not accounted for, distinguishing

between multiple calls is not possible, so irrelevant contex-

tual information muddies the mix when program state is being

analyzed after a function call returns, significantly reducing

analysis accuracy. Additional processing is needed to resolve

context-dependency, such as the use of the stack to ensure

consistent handling of function calls and returns. This sort of

analysis is called inter-procedural program analysis.

So to enable highly accurate binary program analysis when

function positions cannot be identified, you need to estimate

function call/return positions during the analysis process.

With existing static analysis methods, function positions are

inferred by assuming that minimum calling conventions are

followed (on Intel x86 architecture, for example, the CALL

instruction is used to call functions and the RET instruction

is used for returns).

Even the minimum calling conventions, however, cannot

be guaranteed if you have no prior knowledge of the tar-

get program. For instance, the CALL/RET instructions may

be used for purposes other than function calls/returns, or

conversely, they could be replaced by other instructions. So

to apply existing static analysis methods to binary program

analysis, you need to have prior knowledge that guarantees

the “goodness” of the target program.

The difficulties in binary program analysis discussed so far

can be summarized as follows.

1.Disassemblers do not know the destination of indirect

jump instructions.

2.In order to determine the destination of indirect jump

instructions using existing static analysis methods,

the program must first be divided into functions.

3.To identify the location of functions in a binary pro-

gram, you need to make assumptions about, e.g.,

what sort of compiler was used and whether calling

conventions are followed.

As such, existing binary program analysis methods require

that you have prior knowledge about the conditions under

which the program being analyzed was created, and that

this knowledge is reliable.

Our method*4 uses analysis of an intermediate represen-

tation that we propose to identify parts of a program as

functions during the control flow reconstruction process,

the aim being to make static program analysis applicable

even in the absence of prior knowledge (i.e., even if the

program is “bad”).

*4 Izumida2018: Izumida, T., Mori, A., & Hashimoto, M. (2018, January). Context-Sensitive Flow Graph and Projective Single Assignment Form for Resolving Con-

text-Dependency of Binary Code. In Proceedings of the 13th Workshop on Programming Languages and Analysis for Security (pp. 48-53).

27

© Internet Initiative Japan Inc.

3.3 Binary Program Analysis Using
 the Projective Single Assignment Form
In this section, we describe the method we are working on.

As a working example, we use the 32-bit Intel x86 architec-

ture program shown in Figure 4.

In the example in Figure 4, the function code (A) is called

twice, but instead of using the CALL/RET instructions, the

code stores the return address in the EBX register and then

jumps to (A), at which point it increments the ECX register

by 1 and then jumps to the address stored in EBX, which

takes it back to the instruction following the call. Existing

analysis tools like IDA Pro cannot recognize code like this as

function calls because it does not use the standard CALL/

RET style (Figure 5).

In our research, we convert each machine instruction into

simple assignment forms, and then further convert this into

static single assignment (SSA) form. SSA is an internal rep-

resentation format used in compiler optimization analysis. It

changes variable names so that each variable definition is

unique. This clarifies the definition-and-use (def-use) rela-

tionship of each variable, making it easy to understand the

[Working example]

00401000: xor ecx, ecx　　　　
00401002: mov ebx, 0x40100c
00401007: jmp 0x401017
0040100c: mov ebx, 0x401016
00401011: jmp 0x401017
00401016: hlt

00401017: inc ecx ; (A)
00401018: jmp ebx

Figure 4: Working Example on 32-bit Intel x86 Architecture

Figure 5: Example of Disassembly in IDA Pro

28

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

flow of information. For example, in Figure 6, the two ECX

assignments are differentiated as ECX1 and ECX4.

Here, the code ends with an indirect jump to the return

address stored in the EBX register (the jump instruction is

expressed as an assignment to the program counter [EIP]).

If you trace the definition of EBX2 on the the right-hand side

of the assignment, you can easily see that it is 0x40100c.

So the destination address of this indirect jump expands to

0x40100c.

Figure 7 graphs the point up to where the second (A) call

is completed. SSA expresses information merge points by

introducing a pseudo-function called the Φ-function. For ex-

ample, in the assignment statement EBX8 ← Φ8 (3: EBX2, 7:

EBX6), the EBX register values EBX2 from node 3 and EBX6

from node 7 merge and are newly assigned to the variable

EBX8. As before, if we trace the definition of EBX8, it is ex-

pressed with a Φ-function as Φ8 (3:0x40100c,7:0x401016).

This means that if control reaches node 8 from node 3, the

EBX register takes the value of 0x40100c, whereas if con-

trol comes from node 7, it takes the value 0x401016, so

there is a merging of information. In our research, we refer

to this changing of destination addresses due to information

merging at certain points as context-dependency. Here, the

code in the range from 0x401017 to 0x401018 is reused

by multiple contexts, so we can infer that this is a function.

If context dependency is detected in this way, our method in-

serts a pseudo-function called the Π-function (Figure 8). The

Π-function acts as a projection function for the Φ-function.

For example, the expression Π3 → 8 (…) means that the

information coming from node 3 is extracted from the in-

formation merged at node 8, so it is evaluated as Π3 → 8 (Φ8

(3: X, 7: Y)) ⇒ X. This extension of the SSA form with Π

projective functions is our own novel approach, which we

call the projective single assignment (PSA) form.

ECX ← 0
401000 xor ecx, ecx1

EBX ← 40100c
401002 mov ebx, 0x40100c2

3
EIP ← 401017
401007 jmp 0x401017

ECX ← ECX + 1
401017 inc ecx4

EIP ← EBX
401018 jmp ebx5

ECX1 ← 0
401000 xor ecx, ecx1

EBX2 ← 40100c
401002 mov ebx, 0x40100c2

3
EIP3 ← 401017
401007 jmp 0x401017

ECX4 ← ECX1 + 1
401017 inc ecx4

EIP5 ← EBX2

401018 jmp ebx5

SSA

ECX1 ← 0
401000 xor ecx, ecx1

EBX2 ← 40100c
401002 mov ebx, 0x40100c2

3
EIP3 ← 401017
401007 jmp 0x401017

EBX6 ← 401016
40100c mov ebx, 0x4010166

EIP7 ← 401017
401007 jmp 0x4010177

 ECX8 ← Φ8(3:ECX1, 7:ECX4)
EBX8 ← Φ8(3:EBX2, 7:EBX6)８

ECX4 ← ECX8 + 1
401017 inc ecx4

EIP5 ← EBX8

401018 jmp ebx5

ECX1 ← 0
401000 xor ecx, ecx1

EBX2 ← 40100c
401002 mov ecx, 0x40100c2

3
EIP3 ← 401017
401007 jmp 0x401017

EBX6 ← 401016
40100c mov ecx, 0x4010166

EIP3 ← 401017
401007 jmp 0x4010177

 ECX9 ← Π3→8(ECX4)
EBX9 ← Π3→8(EBX8)9

 ECX10 ← Π7→8(ECX4)
EBX10 ← Π7→8(EBX8)10

 ECX8 ← Φ8(3:ECX1, 7:ECX9)
EBX8 ← Φ8(3:EBX2, 7:EBX6)８

ECX4 ← ECX8 + 1
401017 inc ecx4

EIP5 ← EBX8

401018 jmp ebx5

401016 hlt11

Figure 6: SSA Form: Up to the end of the first (A) call

Figure 7: SSA Form: Up to the end of the second (A) call Figure 8: PSA Form: Insertion of Π-functions

29

© Internet Initiative Japan Inc.

area will be overwritten during the for loop is expressed in

the PSA form as follows.

This means whether EBP1 + 4 ≤ EBP1 - 10 + i2 ≤ EBP1 + 8

is satisfied under the condition that i2 < 10. Since i2 is de-

fined as Φ (i1, i4) and i4 is defined in the loop, i2 will change

within the loop. If an i2 value that satisfies this condition

exists, there is a possibility of the return address value being

overwritten during the loop. In this case here, however, it

is easy to see that no such i2 value exists. In other words,

it is guaranteed that this loop will not change the return

address area.

In practice, loop conditions and the memory overwrite con-

ditions appear in more complicated forms. Finding loop

invariants (conditions that do not change within a loop) is

important in determining whether conditions such as these

that vary within loops are satisfiable. Research on analysis

methods for automatically evaluating such loop invariants

has advanced in recent years and has been implemented in

SMT solvers such as Z3. In our research, our objective is

to extract loop conditions and memory overwrite conditions

from binary programs and automatically calculate loop in-

variants using an SMT solver. This analysis will not always

determine a solution within a specific timeframe, but if it

can determine there to be no possibility of an overwrite, it

Using Π-functions, the value of the ECX register when the pro-

gram ends (node 11), for example, can be derived as follows.

So by extracting context-dependency during the reconstruc-

tion process, we are able to resolve programs even if they

do not follow calling conventions..

3.4 Application: Verifying Buffer-Overflow Safety
NThe projective single assignment adds not only projective

Π-function but also conditional Γ-functions, which record

the branching condition at each conditional branch. If loops

are used within a function to rewrite data on the stack, the

use of Γ-functions makes it possible to determine whether

it is possible for the return address on the stack to be

overwritten.

For example, converting the program in Figure 9 to PSA

form and simplifying it results in Figure 10.

Here, Ld (M, A, N) denotes an N-byte value being read from

address A in memory state M, and St(M,A,X,N) denotes the

N-byte value X being set at address A in memory state M.

In this example, when the function finishes, the program

jumps to the 4-byte return address stored in the stack loca-

tion expressed as EBP1 + 4. The condition under which this

void f() {
 char buf [10];
 for (int i = 0; i < 10; i ++)
 buf[i] = 0;
 return;
}

buf[10]

Return address

EBP1-10

EBP1

EBP1+4

ECX10 ⇒ Π7→8(ECX4) ⇒ Π7→8(ECX8) + 1 ⇒ Π7→8(Φ8(3:ECX1, 7:ECX9)) + 1

⇒ ECX9 + 1 ⇒ Π3 → 8(ECX4) + 1 ⇒ Π3→8(ECX8) + 2 ⇒ Π3→8(Φ8(3:ECX1, 7:ECX9)) + 2

⇒ ECX1 + 2 ⇒ 2

Γ(i2 < 10, EBP1 + 4 ≤ EBP1 − 10 + i2 ≤ EBP1 + 8)

M3 ← Γ(I2 < 10, M2)

 I3 ← I2 + 1
M4 ← St(M3, EBP1 -10 + I2, 0, 1)

M5 ← Γ(I2 ≥ 10, M2)

I1 ← 0

 M2 ← Φ(M1, M4)
I1 ← Φ(I1, I4)

EIP ← Ld(M5, EBP1 + 4, 4)

Figure 9: Example Program Figure 10: Loop

30

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

*5 Cha2012: Cha, S. K., Avgerinos, T., Rebert, A., & Brumley, D. (2012, May). Unleashing mayhem on binary code. In 2012 IEEE Symposium on Security and Privacy

(pp. 380-394). IEEE.

*6 Wang2017: Wang, F., & Shoshitaishvili, Y. (2017, September). Angr-the next generation of binary analysis. In 2017 IEEE Cybersecurity Development (SecDev) (pp.

8-9). IEEE.

can guarantee that no buffer overflow will occur. And if it

does identify the possibility of an overwrite, you can investi-

gate the conditions under when overwrites can occur.

We are currently studying the application of this method to

technology that detects vulnerabilities, such as buffer over-

flows, and the presence of backdoors, such as Trojan horses,

in embedded firmware in AI edge devices and the like.

3.5 Conclusion
This article has described the assumption-free binary pro-

gram analysis technology being developed at the IIJ Research

Laboratory. Existing static analysis methods require that a

program is first divided into separate functions, but doing

this requires prior knowledge of or assumptions about how

the program was generated. Using an extension of the SSA

form, our method makes it possible to identify the location

of functions by evaluating the destination of indirect jump

instructions while also extracting context-dependency. This

means that program analysis can be performed even on “bad”

programs about which no prior knowledge can be obtained.

However, static binary program analysis involves undecid-

able problems, so no analysis method can provide a complete

solution. Even with our method, we halt the evaluation and

generate an approximate solution when the evaluated form

becomes bloated and it appears that finding a static solution

will be difficult.

Another method for binary program analysis is symbolic ex-

ecution. This method of analysis sits somewhere between

static and dynamic analysis. In 2016, mayhem*5 and angr*6,

analysis tools that use symbolic execution, were among the

leaders in the Cyber Grand Challenge, an IT security auto-

mation contest created by DARPA. Symbolic execution can

detect if a program might produce dangerous states such

as buffer overflows. But proving that a program is safe—

meaning that it cannot produce any dangerous states at

all—requires exhaustive execution, which is not something

that symbolic execution is suited to. In this respect, we be-

lieve symbol execution and our method can complement

each other.

Looking ahead, we aim to develop binary program analysis

tools that integrate our method with other analysis tech-

niques such as symbolic execution and dynamic analysis.

Acknowledgment

This research is carried out as part of “Research &

Development on Fundamental Technologies Required for

Comprehensive Security Evaluation of AI Edge Devices”

work commissioned by Japan’s New Energy and Industrial

Technology Development Organization (NEDO).

Tomonori Izumida

Researcher, IIJ Innovation Institute (since 2015). PhD (information science).

31

	3.	Focused Research (2)
	3.1	Introduction
	3.2	Binary Program Analysis
	3.3 Binary Program Analysis Using the Projective Single Assignment Form
	3.4	Application: Verifying Buffer-Overflow Safety
	3.5	Conclusion

