
© Internet Initiative Japan Inc.

Points to Watch when Acquiring Windows
Memory Images

*1 Internet Infrastructure Review (IIR) Vol. 45, Focused Research (2): Acquiring Forensic Memory Images on Linux (https://www.iij.ad.jp/en/dev/iir/045.html).

*2 The Volatility Foundation (https://www.volatilityfoundation.org/).

*3 Rekall Forensics (http://www.rekall-forensic.com/).

2.1 Acquiring Memory Images on Windows
In Vol. 45, we discussed the acquisition of forensic memory

images on Linux*1. In this edition, we discuss the acquisition

of memory images on Windows.

We use tools such as those listed in Table 1 to acquire full

memory images of Windows systems. We use the Volatility

Framework*2 and Rekall Memory Forensic Framework*3 to

analyze the images.

Windows version upgrades, however, can come with changes

to the memory management framework to improve security

and performance. So you need to use tools compatible with

the new specifications to acquire and analyze memory im-

ages. Not only do we cover memory image acquisition tools

here, we also discuss some key points to watch when actu-

ally acquiring and analyzing images. We also suggest reliable

ways of acquiring individual process dumps.

2.2 Points to Watch when Acquiring/Analyzing
 Memory Images
In this edition, we explain how to deal with the three fea-

tures: the paging files, memory compression, and Virtual

Secure Mode. Paging files existed in Windows prior to ver-

sion 10, but other features were added in updates after the

Windows 10 release.

■ Paging Files

Windows saves a process’s paged-out virtual memory pages

in a paging file called C:\pagefile.sys. Figure 1 shows the

result of extracting notepade.exe from a Windows 10 1809

memory image using Volatility’s procdump tool. This was

done right after notepad.exe started, so the process dump

was successful. Figure 2, meanwhile, shows the result of

trying to dump notepad.exe from a memory image taken

on the same system after memory usage had jumped. This

was unsuccessful because of a page-out. The memory

2. Focused Research (1)

>vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot82.vmem" procdump --pid=4596 -D procdump

Volatility Foundation Volatility Framework 2.6.1

Process(V) ImageBase Name Result

------------------ ------------------ -------------------- ------

0xffffaf86ab950480 0x00007ff7413c0000 notepad.exe OK: executable.4596.exe

>vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot83.vmem" procdump --pid=4596 -D procdump

Volatility Foundation Volatility Framework 2.6.1

Process(V) ImageBase Name Result

------------------ ------------------ -------------------- ------

0xffffaf86ab950480 0x00007ff7413c0000 notepad.exe Error: ImageBaseAddress at 0x7ff7413c0000 is unavailable (possibly due to paging)

Tool

WinPmem memory imager

Comae Technologies

MAGNET RAM Capture

Belkasoft RAM Capturer

Vendor

https://winpmem.velocidex.com/

https://www.comae.com/

https://www.magnetforensics.com/resources/magnet-ram-capture/

https://belkasoft.com/ram-capturer

Table 1: Examples of Memory Image Acquisition Tools

Figure 1: A Successful Volatility procdump

Figure 2: An Unsuccessful Volatility procdump

16

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

*4 Volatility 3 Public Beta: The Insider’s Preview (https://www.osdfcon.org/events_2019/volatility-3-public-beta-the-insiders-preview/).

images used for analysis in Figures 1 and 2 are VMware

Workstation memory snapshots. We used these when pre-

paring this article to make it a bit easier to acquire memory

images in the state that we wanted.

The paging file stores paged-out memory data, so we want

to use it in our analysis if possible. But many memory image

acquisition tools do not collect this file. With WinPmem, the

memory image and paging file can be obtained almost simulta-

neously by specifying pagefile.sys with the “-p” option (Figure

3). It can also be obtained using The Sleuth Kit or FTK Imager,

but keeping the time interval between the memory image and

pagefile.sys as short as possible averts discrepancies.

Obtaining pagefile.sys is pointless if the memory image anal-

ysis tool does not support it. Rekall can analyze memory

images and pagefile.sys seamlessly as a single, complete
memory image. Immediately after the outcome in Figure 2,

we used the command in Figure 3 to acquire a memory

image and pagefile.sys using WinPmem, and then using

Rekall’s procdump plugin, we were able to dump the note-

book.exe process from those files (Figure 4). A look at the

first part of the file shows that it is an MZ header (the proc-

dump plugin dumps the specified process in PE format).

Volatility 2, on the other hand, cannot analyze pagefile.sys

files like Rekall. Presentation slides released for OSDFCon

2019*4, however, contain hints that the currently in-de-

velopment Volatility 3 will support paging files as well as

memory compression as described below, so it looks like

Volatility will support paging file analysis in future.

The WinPmem version used in Figure 3 is 2.1 post4. The lat-

est WinPmem as of this writing (Feb. 2020) is 3.3 rc3, but

analyzing the generated AFF4 file with Rekall produced the

error in Figure 6. We have not inspected all of the relevant

>winpmem-2.1.post4.exe -p c:\pagefile.sys -o memdump.aff4 $ hexdump -C executable.notepad.exe_4596.exe | head -10

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 f8 00 00 00 |................|

00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|

00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |

00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|

00000080 15 48 94 65 51 29 fa 36 51 29 fa 36 51 29 fa 36 |.H.eQ).6Q).6Q).6|

00000090 58 51 69 36 4f 29 fa 36 34 4f f9 37 52 29 fa 36 |XQi6O).64O.7R).6|

$ rekal -f winpmem3.aff4 pslist

Traceback (most recent call last):

 File "/home/user01/Downloads/rekall/rekall-core/rekall/addrspace.py", line 519, in read_partial

 data = self._cache.Get(chunk_number)

 File "/home/user01/Downloads/rekall/rekall-lib/rekall_lib/utils.py", line 147, in NewFunction

 return f(self, *args, **kw)

 File "/home/user01/Downloads/rekall/rekall-lib/rekall_lib/utils.py", line 336, in Get

 raise KeyError(key)

KeyError: 0

(snip)

 File "/home/mkobayashi/envs/win10_rekall2/lib/python3.6/site-packages/pyaff4/aff4_image.py", line 432, in _ReadChunkFromBevy

 "Unable to process compression %s" % self.compression)

RuntimeError: Unable to process compression https://tools.ietf.org/html/rfc1951

$ rekal -f memdump.aff4 procdump --proc_regex="notepad*" --dump_dir="./"

Webconsole disabled: cannot import name 'webconsole_plugin'

 _EPROCESS Filename

-- --------

0xaf86ab950480 notepad.exe 4596 executable.notepad.exe_4596.exe

Figure 3: Acquiring a Memory Image and pagefile.sys with WinPmem

Figure 4: Running procdump with pagefile.sys Figure 5: File Dumped by Rekall’s procdump

Figure 6: Rekall Throws an Error when Passed an AFF4 File Acquired with WinPmem 3.x

1717

© Internet Initiative Japan Inc.

source code, but it looks like the error is due to the default

compression format for saved data as of WinPmem 3.3 rc2

having been changed to deflate, which Rekall does not sup-

port (the default in WinPmem 2.x is zlib). WinPmem’s “-c”

option specifies compression format, but we had the same

processing error even when using zlib. Also, zlib was the

default compression format in WinPmem 3.x versions be-

fore WinPmem 3.3 rc1, but using these versions to generate

AFF4 files that contain the paging file and running them

through Rekall produced a different error (AFF4 files without

the paging file do work).

So when using Rekall as the analysis tool, WinPmem 2.1

post4 can create memory images that are less likely to cause

problems during analysis. That said, we do not recommend

using WinPmem 2.x because it is no longer being developed,

it can cause forced shutdowns on Windows 10, and it does

not support Virtual Secure Mode, which we discuss below.

Note that Rekall development is effectively on hold; a new

version has not been released since December 2017.

Hopefully, if development of Volatility and Rekall moves

forward, they will eventually be able to analyze AFF4 files

generated by WinPmem 3.x, but until such time, acquiring

memory images and paging files using WinPmem 3.x and

exporting the image as shown in Figure 7 is probably the

better option. The exported memory image is in RAW for-

mat, so you can use either Volatility or Rekall for analysis.

■ Memory Compression

Paging of a process’s virtual memory involves paging file

reads and writes, which inevitably degrades system perfor-

mance. SSDs have become widespread in recent years, so

latency is not what it was with HDDs, but performance still

unmistakably drops. But page-in and page-out performance

can be improved by creating a dedicated area in memory to

store paged-out pages in compressed form. The size of the

compressed pages can be viewed in the Memory section

of the Task Manager’s Performance tab (red box in Figure

8). This framework was adopted from Windows 10 1511.

Similar frameworks exist in macOS and Linux.

Analyzing memory images containing compressed memory

data naturally requires a tool that can cope. Unfortunately,

Volatility 2 and Rekall cannot currently analyze compressed

memory data from any OS along with other memory pages

in a seamless fashion.

>winpmem_v3.3.rc3.exe -dd -e */PhysicalMemory -D <export_dir> <image_file>.aff4

Figure 7: Exporting a Memory Image
from an AFF4 File Generated by WinPmem 3.x Figure 8: Size of the Compressed Memory

18

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

*5 SANS DFIR Summit 2019 (https://www.sans.org/event/digital-forensics-summit-2019/summit-agenda).

*6 Paging All Windows Geeks – Finding Evil in Windows 10 Compressed Memory (https://www.blackhat.com/us-19/briefings/schedule/#paging-all-windows-geeks--

finding-evil-in-windows--compressed-memory-15582).

*7 win10_volatility (https://github.com/fireeye/win10_volatility).

*8 win10_rekall (https://github.com/fireeye/win10_rekall).

However, at SANS DFIR Summit Austin 2019*5 and BlackHat

USA 2019*6, FireEye’s Omar Sardar and Dimiter Andonov

announced implementations of Volatility*7 and Rekall*8 that

support Windows 10 memory compression.

Note that as both implementations only support Windows

10 1607 through 1809, memory images from Windows 10

1903 or later cannot be analyzed. As of this writing, the

announced capability does not seem to have been incorpo-

rated into the developers’ source code, but as mentioned

earlier, Volatility is set to add support in the new version.

Figures 9 and 10 show the results of running the hashdump

plugin on the original Volatility and Volatility with support

for memory compression. The hashdump plugin retrieves a

user’s password hash from the registry hive read into mem-

ory. Since the user password hash is stored in compressed

memory, original Volatility gives no output, but Volatility

with support for memory compression is able to print out

the hash.

■ Virtual Secure Mode

The Enterprise and Education editions of Windows 10 1511

and later, and Windows Server 2016 and later, introduce a

virtualization-based security (VBS) isolation mechanism that

uses virtual machines. Security mechanisms such as Device

Guard and Credential Guard are implemented using VBS by

executing virtual machines for specific functions in what

is called Virtual Secure Mode (VSM). These features allow

you to run integrity checks when loading drivers, place ex-

ecution restrictions on applications, and protect credentials.

Running a tool without support for VSM, such as WimPmem

2.x, yields a BSoD as shown in Figure 11.

> vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot64.vmem" hashdump

Volatility Foundation Volatility Framework 2.6.1

> vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot64.vmem" hashdump

Volatility Foundation Volatility Framework 2.6.1

localuser01:1001:8492e81f418ee4da82b19ef1f27d39af:17e26cdcb1cf786246e7cf8373a540ca:::

Figure 9: Result of Running hashdump Plugin on Original Volatility

Figure 11: Running Memory Image Acquisition Tools
with no VSM Support Yields a BSoD

Figure 10: Result of Running hashdump Plugin on Volatility with Memory Compression Support

1919

© Internet Initiative Japan Inc.

You need to use Rekall if you want to analyze paging files as

well, but as development has stopped and it has compatibil-

ity issues with WinPmem 3.x, it’s probably not a go-to tool

for many situations. Unfortunately, none of the tools cur-

rently available cater to every case. But the situation looks

set to improve with the release of Volatility 3.

2.3 Reliable Process Dumpings
So far, we have discussed precautions and strategies for

acquiring memory images. But even with these measures,

ensuring the integrity of captured memory images is diffi-

cult. If the host being analyzed is a VM, you can obtain

a complete memory image by taking a snapshot. But on

live systems, various processes will be running when you

By default, a BSoD causes the host to automatically reboot.

The entire contents of memory will of course be erased, so

you need to determine beforehand whether the tool you are

using is compatible with VSM. Note that the latest versions

of the tools in Table 1 do not trigger a BSoD, so consider

updating if you are using an older version.

■ Which Memory Image Analysis Tool Should You Use?

Table 2 summarizes the types of data supported by the

memory image analysis tools we have discussed. Of these,

only Volatility 2 remains in active development and is thus

essentially our recommendation. But Volatility with memory

compression support should be used when analyzing mem-

ory images from Windows 10 1809 or earlier.

Volatility 2

Rekall

Volatility with memory compression support

Rekall with memory compression support

Development has stopped

Supports up to Windows 10 1809

Supports up to Windows 10 1809

Tool

AFF4RAW

Memory images NotesMemory compressionPaging file

*1 Cannot parse AFF4 files generated by WinPmem 3.3 rc2 and later
*2 Cannot parse AFF4 files containing paging files generated by WinPmem 3.3 rc2 and later

*1

*1

*2

*2

Table 2: Comparison of Memory Image Acquisition Tools

20

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

*9 ProcDump - Windows Sysinternals (https://docs.microsoft.com/en-us/sysinternals/downloads/procdump).

capture the memory image, so the data in memory can

change and page-outs can occur. So even if you analyze the

memory image, you may find that the contents of process

memory are not internally consistent.

Figure 12 compares the .text sections of the files dumped in

Figure 1 (left) and Figure 4 (right). As Figure 5 showed, the

MZ header was extracted correctly from the file dumped by

Rekall, but a look at the .text sections of both files shows

that the data values in the file dumped by Rekall are all 0x00

(red area in Figure 12). As discussed, this kind of situation

is unavoidable, but it can hinder process analysis. In cases

like this, dumping each process from userland individually

can give internally consistent process dumps (dumping a

process triggers memory access, causing the OS to page-in

anything that has been paged out, enabling you to capture

all of the process’s virtual memory pages).

Several tools for dumping processes exist. Windows

Sysinternals ProcDump*9 is a common one. Note that it is

different from the plugins of the same name that exist for

Volatility and Rekall. Also, Volatility’s and Rekall’s procdump

generate PE format files, whereas Sysinternals ProcDump

uses the crash dump format.

Running this with the command in Figure 13 will dump the

process with an ID of 4596. You can also specify process

name instead of process ID. It’s also useful to pass in the

>procdump64.exe -ma 4596

ProcDump v9.0 - Sysinternals process dump utility

Copyright (C) 2009-2017 Mark Russinovich and Andrew Richards

Sysinternals - www.sysinternals.com

[12:05:29] Dump 1 initiated: C:\Users\localuser01\Desktop\tools\notepad.exe_200206_120529.dmp

[12:05:29] Dump 1 writing: Estimated dump file size is 107 MB.

[12:05:32] Dump 1 complete: 107 MB written in 3.8 seconds

[12:05:33] Dump count reached.

Figure 12: Process Dump Discrepancies

Figure 13: Dumping a Process Using the ProcDump Command

2121

© Internet Initiative Japan Inc.

*10 Download Debugging Tools for Windows - WinDbg (https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools).

*11 Debugging Using WinDbg Preview (https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-using-windbg-preview).

*12 7-Zip (https://www.7-zip.org/).

“-ma” option to dump all of the memory used by the pro-

cess. The crash dump generated can be read using tools like

WinDbg*10*11. Figure 14 is a screenshot of WinDbg reading

in the crash dump generated by ProcDump after Figure 4.

The code that was missing with Rekall’s procdump is now

present (red area in Figure 14). Using ProcDump like this

ensures a reliable process dump.

2.4 Scripted Process Dumps and Order of Steps
 to Preserve Artifacts
Creating a script in PowerShell or the like makes it easy

to run ProcDump for all processes. Dumping all processes,

however, will yield tens of GB or more. This is no problem

if there is enough space on the storage destination, but if

you want to keep the data on a small USB memory stick or

external SSD, compressing the data with a tool like 7-Zip*12

after each dump is the way to go. You also need to specify

the right compression command option to ensure that the

temporary files created when compressing files are not writ-

ten to the disk being analyzed. With 7-Zip, the “-w” option

specifies the working folder, so you should use this to spec-

ify the disk on which you will be preserving the artifacts.

When running ProcDump, we skip protected processes like

System and Registry (trying to dump those results in an

error). These scripts need to run in various system environ-

ments, so they are often created using PowerShell (installed

on Windows by default) or as a batch file, but there are

some key points to note.

Launching the PowerShell prompt (powershell.exe) or

command prompt (cmd.exe) will also launch the console

Figure 14: Inspecting the Process Dump in WinDbg

22

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

window host (conhost.exe). If you try to dump the conhost.

exe hosting the prompt that launched the PowerShell script

or batch file that runs ProcDump, the ProcDump process

will stop. This is because ProcDump suspends a process

when dumping it. Since conhost.exe is the process handling

the console’s IO buffer and display, suspending this process

also stops the ProcDump instance running in the console

(Figure 15). If necessary, you can analyze conhost.exe by

acquiring a memory image using WinPmem.

Depending on the system environment, executing the script

can result in several hundred, or more, process dump and

file compression cycles. So from a forensics point of view,

it may be good practice to preserve the artifacts according

to ordered steps such as those in Figure 16.

2.5 Conclusion
We have discussed key points to note when acquiring and

analyzing memory images on Windows. We also looked

at process dumping with a view to aiding image integrity

when acquiring memory images. Many articles dealing with

memory forensics imply that the preservation task can be

completed by acquiring a memory image using WinPmem

or the like, but we hope it is now evident that this is not

always sufficient. That said, dumping and compressing all

processes is time consuming, so you need to decide on

whether to do this in accord with the situation and policies

in effect when the incident response is initiated.

Minoru Kobayashi

Forensic Investigator, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Kobayashi is a member of IIJ-SECT, mainly dealing with digital forensics. He works to improve incident response capabilities and in-
house technical capabilities.
He gives lectures and training sessions at security events both in Japan and abroad, including Black Hat, FIRST TC, JSAC, and Security
Camp events.

1. Memory image

2. Artifacts that can be preserved as individual files from disk,

 such as MFT, Prefetch, and event logs

3. Process dumps

4. Disk image

Figure 15: Dumping conhost.exe Causes ProcDump to stop Figure 16: Example of Ordered Steps for Artifact Preservation

2323

	2.	Focused Research (1)
	2.1	Acquiring Memory Images on Windows
	2.2	Points to Watch when Acquiring/Analyzing		Memory Images
	2.3	Reliable Process Dumpings
	2.4	Scripted Process Dumps and Order of Steps		to Preserve Artifacts
	2.5	Conclusion

