
Vol. 46
Internet
Infrastructure
Review

May 2020

Periodic Observation Report

SOC Report

Focused Research (1)

Points to Watch when Acquiring
Windows Memory Images

Focused Research (2)

Binary Program Analysis
With No Prior Knowledge
of Analysis Target

Internet Infrastructure Review
May 2020 Vol.46

© Internet Initiative Japan Inc.

Executive Summary . 3

1. Periodic Observation Report . 4

1.1 Introduction . 4

1.2 2019 Security Topics . 4

1.3 Observational Data . 6

1.3.1 Information Leaksfrom Externally Exposed Elasticsearch Servers . 6

1.3.2 DDoS Attack Observations . 7

1.3.3 Emotet . 12

1.4 Conclusion . 15

2. Focused Research (1) . 16

2.1 Acquiring Memory Images on Windows . 16

2.2 Points to Watch when Acquiring/Analyzing Memory Images . 16

2.3 Reliable Process Dumpings . 20

2.4 Scripted Process Dumps and Order of Steps to Preserve Artifacts . 22

2.5 Conclusion . 23

3. Focused Research (2) . 24

3.1 Introduction . 24

3.2 Binary Program Analysis . 25

3.3 Binary Program Analysis Using the Projective Single Assignment Form . 28

3.4 Application: Verifying Buffer-Overflow Safety . 30

3.5 Conclusion . 31

2

© Internet Initiative Japan Inc. 3

Vol. 46May 2020

Executive Summary

Executive Summary

Junichi Shimagami

Mr. Shimagami is a Senior Executive Officer and the CTO of IIJ. His interest in the Internet led to him joining IIJ in
September 1996. After engaging in the design and construction of the A-Bone Asia region network spearheaded by IIJ,
as well as IIJ’s backbone network, he was put in charge of IIJ network services. Since 2015, he has been responsible
for network, cloud, and security technology across the board as CTO. In April 2017, he became chairman of the
Telecom Services Association of Japan MVNO Council.

The year 2020 was to be the second time Tokyo hosted the Olympic and Paralympic Games. As preparations
for the games were entering their final stages, the world was rocked by news of the novel coronavirus. The
daily stream of media reports brings home just how hard it is to prevent the rapid spread of a virus like this
in our modern world, where people and goods are constantly moving across the globe. Despite the efforts of
WHO and government bodies around the world to stem the outbreak, the number of infections continues to
rise daily.

Viral infections are not the only thing to propagate rapidly. Huge amounts of information spread through the
Internet like wildfire, and we are constantly bombarded with all sorts of information about the coronavirus.
That information is not always accurate. Some of it is partial to a particular perspective, some of it is geared
to the interests of specific people, and some of it is even deliberately crafted to mislead. The great advances
in information and communications technology we enjoy in our modern world afford us the freedom to obtain
myriad information, yet at the same time, these recent world events have reaffirmed the need for individuals
to verify the truthfulness of the vast sea of information available, and to think and act accordingly.

The IIR introduces the wide range of technology that IIJ researches and develops, comprising periodic obser-
vation reports that provide an outline of various data IIJ obtains through the daily operation of services, as
well as focused research examining specific areas of technology.

As our periodic observation report for this edition, Chapter 1 contains our SOC Report. IIJ’s SOC analyzes
huge amounts of log data, including those from security devices provided as IIJ services, on its Data Analyt-
ics Platform, and we release up-to-date information on threats in blog format via wizSafe Security Signal. In
this edition, we list the key security topics in 2019 that our SOC was focused on and look at three notable
types of activity revealed by the Data Analytics Platform: information leaks via Elasticsearch servers, DDoS
attacks, and Emotet. Our discussion incorporates IIJ’s own observational data throughout, which we hope
will be of keen interest.

The focused research report in Chapter 2 follows on from the forensic memory imaging discussion in Vol. 45.
In that edition, we looked at acquiring memory images on Linux. This time around, we focus on Windows
memory images. We go beyond simply introducing memory imaging tools and also discuss key points to be
aware of when capturing and analyzing memory images. We also suggest methods of reliably dumping indi-
vidual processes.

The focused research report in Chapter 3 looks at the IIJ Innovation Institute’s research into binary program
analysis technology that requires no special assumptions to be made about the program being analyzed.
Program analysis technology is built into integrated development environments and helps to streamline de-
velopment and reduce bugs. Investigating the behavior of suspected malware programs, meanwhile, at times
requires us to analyze in-the-wild binary programs of unknown origins. Chapter 3 discusses research efforts
to develop technology for the static analysis of binary programs that requires no prior knowledge or assump-
tions about the program’s origins.

Through activities such as these, IIJ strives to improve and develop its services on a daily basis while main-
taining the stability of the Internet. We will continue to provide a variety of services and solutions that our
customers can take full advantage of as infrastructure for their corporate activities.

© Internet Initiative Japan Inc.

*1 Internet Infrastructure Review (IIR) Vol.38 (https://www.iij.ad.jp/en/dev/iir/038.html).

*2 Internet Infrastructure Review (IIR) Vol.42 (https://www.iij.ad.jp/en/dev/iir/042.html).

1. Periodic Observation Report

SOC Report

1.1 Introduction
IIJ launched the wizSafe security brand in 2016 and works

constantly to create a world in which its customers can use

the Internet safely. In our SOC Report in Vol. 38*1 we exam-

ined the Data Analytics Platform at the core of wizSafe, and

in Vol. 42*2 we discussed threats that came to light in 2018

and new initiatives using the Data Analytics Platform. Here,

we review key security topics for 2019 (Section 1.2) and

discuss observations made on the Data Analytics Platform

about threats related to those topics (Section 1.3).

1.2 2019 Security Topics
Key security topics that our SOC focused on in 2019 are

summarized in Table 1.

4

Vol. 46May 2020

© Internet Initiative Japan Inc.

1. Periodic Observation Report

Table 1: Key security topics in 2019

Month Summary

A personal information leak occurred on a file transfer service run by a Japanese internet services company due to unauthorized access by a third
party. Roughly 4.8 million rows of member data were affected, and it was announced that the service would close on March 31, 2020.
“Closure of the Taku-File-Bin service (January 14, 2020) ” (retrieved January 14, 2020)
https://www.filesend.to/ (in Japanese)

January

In February 2019, Japan’s Ministry of Internal Affairs and Communications and the National Institute of Information and Communications Technology (NICT)
launched a project called NOTICE (National Operation Towards IoT Clean Environment) to survey IoT devices, find those vulnerable to use in cyberattacks (e.g., due
to weak passwords), and alert the users of those devices.
“The ‘NOTICE’ Project to Survey IoT Devices and to Alert Users”
https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/Releases/Telecommunications/19020101.html
“The ‘NOTICE’ Project to Survey IoT Devices and to Alert Users”
https://www.nict.go.jp/en/press/2019/02/01-1.html

February

The Coinhive service ended on March 8. The reason given was that factors such as repeated changes to cryptocurrency specifications and a decline
in market value made it financially difficult to continue the service.

March

Servers run by a foreign PC manufacturer were subject to an APT (Advanced Persistent Threat). As a result, files containing malicious code were
transmitted to some users who ran updates using the utilities bundled with the manufacturer’s notebooks.
“ASUS response to the recent media reports regarding ASUS Live Update tool attack by Advanced Persistent Threat (APT) groups”
http://www.asus.com/News/hqfgVUyZ6uyAyJe1

March

It was disclosed that an Elasticsearch (full-text search engine) database containing a Japanese automaker’s internal information had been left open
to unauthenticated access. The roughly 40GB of information included employees’ personal information as well as information on the internal
network and devices.
“Honda Motor Company leaks database with 134 million rows of employee computer data”
https://rainbowtabl.es/2019/07/31/honda-motor-company-leak/

July

Increase in attacks targeting a vulnerability in several SSL VPN products announced in April 2019 onward. Details on the vulnerability were revealed
at Black Hat USA 2019 in August, and observations of PoC exploits and attacks using this vulnerability were also reported. Our SOC also observed
attack traffic exploiting the Pulse Secure vulnerability (CVE-2019-11510).
“Over 14,500 Pulse Secure VPN Endpoints Vulnerable to CVE-2019-11510”
https://badpackets.net/over-14500-pulse-secure-vpn-endpoints-vulnerable-to-cve-2019-11510/

August

JPCERT/CC issued an alert on the Emotet malware. The organization said that it had received multiple reports from late October 2019 of infections
caused by Word files attached to forged emails purporting to be from actual organizations or people. And our SOC observed increased levels of
such activity from end-September 2019.
“Alert Regarding Emotet Malware Infections”
https://www.jpcert.or.jp/english/at/2019/at190044.html

November

It was announced that several companies had been infected by the Emotet malware. Alerts were sent out saying that email addresses and email text
saved on the infected devices may have been leaked and that people should not open attachments or URLs in suspicious emails purporting to be
from any of the companies affected.

December

It was discovered that hard disks had been stolen from leased servers returned by a local government at the end of the lease before the data had been deleted from
them. The hard disks were taken by an employee of the company hired by the leasing firm to erase the data and auctioned off on an online auction site.
“Theft of harddisks returned after lease expiry”
http://www.pref.kanagawa.jp/docs/fz7/prs/r0273317.html (in Japanese)

December

A report indicated that over 267 million user records on a foreign social networking service were left exposed on an Elasticsearch server that was
publicly accessible without authentication.
“Report: 267 million Facebook users IDs and phone numbers exposed online”
http://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/

December

It was reported that an Elasticsearch (full-text search engine) database containing the information of over 20 million Ecuadorians had been left open
to unauthenticated access.
“Report: Ecuadorian Breach Reveals Sensitive Personal Data”
http://www.vpnmentor.com/blog/report-ecuador-leak/

September

DDoS attacks were launched on Wikipedia, Twitch, and Blizzard servers. The attacks were staged by a botnet thought to be a Mirai variant.September

April It was discovered that an “ac.jp” domain (reserved for use in Japan by higher education institutions etc.) had been acquired by a non-qualified third
party and that the domain had been used to host an adult website. The reported cause was inadequate checking of the registree’s eligibility to
register the domain. Given the need to ensure the credibility of highly public domains, the Ministry of Internal Affairs and Communications ordered
that steps be taken to prevent a recurrence.
“Administrative action (order) relating to Japan Registry Services Co., Ltd.’s management of ‘.jp’ domain names”
https://www.soumu.go.jp/menu_news/s-news/01kiban04_02000152.html (in Japanese)

June A number of FreeBSD and Linux kernel vulnerabilities related to TCP were announced, including the vulnerability commonly known as SACK Panic
(CVE-2019-11477), which could allow a kernel panic to be triggered by the receipt of deliberately crafted SACK packets.

July It was announced that some accounts on a barcode-based payment service had been subject to unauthorized access and use by third parties. The
reason given was inadequate restrictions against logging in on multiple devices and insufficient additional authentication, including two-step
authentication. The service was terminated on September 30 in response.
“Notice of 7pay service termination, background, and response going forward”
https://www.sej.co.jp/company/important/201908011502.html (in Japanese)

July It was announced that around 3 billion yen worth of cryptocurrency had been taken from a Japan-based cryptocurrency exchange. The funds taken were
stored in “hot wallets”, which are kept in online environments, and it is thought that the private keys had been stolen and used without authorization.
“(Update) Notification and Apology Regarding the Illicit Transfer of Crypto Currency at a Subsidiary of the Company (Third Report)”
https://contents.xj-storage.jp/xcontents/AS08938/0bf3e2e9/7a8a/4e9f/97d5/0f0a146233de/20190802124804913s.pdf

May A remote-code execution vulnerability in Remote Desktop Services, commonly known as BlueKeep, was revealed. As this was judged to have a serious
impact on the spread of malware, an update was provided for end-of-life OS versions. Attacks actually using BlueKeep were also observed in November.
“CVE-2019-0708 | Remote Desktop Services Remote Code Execution Vulnerability”
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0708

May It was announced that three IT security companies had been hacked and that confidential information including development documentation and
antivirus source code may have been stolen. It was later concluded that one of the companies had not been impacted by the incident.
“Top-Tier Russian Hacking Collective Claims Breaches of Three Major Anti-Virus Companies”
https://www.advanced-intel.com/post/top-tier-russian-hacking-collective-claims-breaches-of-three-major-anti-virus-companies

5

© Internet Initiative Japan Inc.

distributed systems to achieve its high-speed search ca-

pabilities. This makes it a not-uncommon choice for large

information banks, and is also why large amounts of infor-

mation tend to be leaked when security incidents do occur.

Elasticsearch provides a RESTful API and allows searches

and data operations to be performed over the HTTP proto-

col. The default port for HTTP access is 9200/TCP.

In 2019, our SOC observed an increase in scanning traffic

on port 9200/TCP that we believe indicates searches for

Elasticsearch servers.

■ Observational Data

Figure 1 plots the number of 9200/TCP scans and source IP

addresses observed over time on the IIJ Managed Firewall

Service. The number of scans is normalized to a percentage

of total 9200/TCP scans observed over the full year such

that the overall total is 100%.

Figure 1 shows a noticeable rise in scans over September

21 – October 31. Scans of 9200/TCP over these 41 days

accounted for roughly 23.37% of all scans during 2019,

and the number of source IP addresses per day rose to a

peak of 30,394. This is about 98.68 times the IP address

count for January 1 (308). No Elasticsearch vulnerabilities

1.3 Observational Data
This section looks at notable activity in 2019 as revealed

using the Data Analytics Platform.

1.3.1 Information Leaksfrom Externally Exposed Elasticsearch

 Servers

■ Elasticsearch and Information Leaks

Large-scale breaches of personal information were frequent

in 2019. Particularly notable were information leaks due

to poorly configured Elasticsearch (full-text search engine)

servers. The security topics in Section 1.2 included three

information leaks related to Elasticsearch. In addition to

the cases listed there, an Elasticsearch server containing a

U.S.-based cloud data management company’s customer

information was left externally accessible without authenti-

cation, according to a report*3 in January 2019, and likewise

for an Elasticsearch server containing information on roughly

90% of Panama citizens, per a May 2019 report*4. Large

amounts of information were leaked in both cases, with the

number of records exceeding several million and the volume

of data exceeding several dozen GB.

Elasticsearch is an open-source, full-text search engine

based on Apache Lucene developed primarily by Elastic*5.

It employs parallel processing of massive datasets on

Figure 1: Scanning of 9200/TCP (January–December 2019)

*3 TechCrunch (https://techcrunch.com/2019/01/29/rubrik-data-leak/).

*4 Security Affairs, “Personally identifiable information belonging to roughly 90% of Panama citizens were exposed on a poorly configured Elasticsearch server”

(https://securityaffairs.co/wordpress/85462/data-breach/panama-citizens-massive-data-leak.html).

*5 Elasticsearch (https://www.elastic.co/).

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

35,000

30,000

25,000

20,000

15,000

5,000

10,000

（Date）

（% of total） （No. of addresses）

Ja
n.

1,
20

19

Feb
. 1

, 2
01

9

Mar.
 1,

 20
19

Apr.
 1,

 20
19

May
 1,

 20
19

Ju
n.

1,
20

19

Ju
l. 1

, 2
01

9

Aug
. 1

, 2
01

9

Sep
. 1

, 2
01

9

Oct.
 1,

 20
19

Nov
. 1

, 2
01

9

Dec
. 1

, 2
01

9

No. of source IP addresses■ No. of scans as % of total

6

Vol. 46May 2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

were announced around this time, and we have found no

clear reason for the increased scanning activity.

On September 16, just before the spike in scans, it was re-

ported that information on more than 20 million Ecuadorians

had been exposed. While it is possible that this is what

prompted the spike, we can find no clear evidence linking

the two phenomena.

Temporary increases in scanning activity also occurred in

mid-February and early April. The source IP count briefly

rose to nearly 3,000 on February 20 and April 3. On

February 19, Elastic announced an Elasticsearch vulnera-

bility (CVE-2019-7611)*6, and we surmise that the upticks

represent searches for servers running Elasticsearch. CVE-

2019-7611 is an access permission vulnerability that, if

exploited, could allow information acquisition or tamper-

ing. Further, Talos, Cisco Systems’ security arm, published

a report on Elasticsearch attacks that occurred around

this time*7. According to the report, attacks targeting

previously revealed vulnerabilities (CVE-2014-3120, CVE-

2015-1427) were observed.

The trend across the year also shows an overall rise in

9200/TCP scanning. The average number of scans per day

in December rose to 0.35% from the January average of

0.14%, a roughly 2.46-fold rise, and the source IP address

count increased roughly 7.02-fold, from 384.74 on average

in January to 2702.10 in December. A report on observa-

tional data issued by Japan’s National Police Agency (NPA)*8

shows a similar trend and, like the Talos report, discusses

attacks thought to have been targeted at CVE-2015-1427.

■ Countermeasures

Most of the widely reported information leaks involving

Elasticsearch in 2019 were due to poorly configured serv-

ers allowing authentication-free access. Important basic

countermeasures include using a firewall to exclude unnec-

essary traffic, including on 9200/TCP, if the system does

not need to be accessible from the Internet and setting up

appropriate authentication to only permit connections from

trusted IP addresses. And as the Talos and NPA reports

indicate, attacks targeting past vulnerabilities continue to

be observed. When information on vulnerabilities relevant

to your system is released, you need to determine what the

impact on your system is and apply the relevant patches.

1.3.2 DDoS Attack Observations

IIJ observes and responds to DDoS attacks employing various

methodologies. This section summarizes key topics in DDoS

attacks in 2019. We start by looking at attacks detected by

the IIJ DDoS Protection Service in 2019. Next, we look at

attack methods that were much talked about in 2019. And fi-

nally we go over examples of damage caused by those attack

methods in 2019, along with observational data.

*6 Elastic, “Security issues” (https://www.elastic.co/jp/community/security).

*7 Cisco Talos, “Cisco Talos Honeypot Analysis Reveals Rise in Attacks on Elasticsearch Clusters” (https://blog.talosintelligence.com/2019/02/cisco-talos-honey-

pot-analysis-reveals.html).

*8 National Police Agency, “Increase in online traffic aimed at Elasticsearch vulnerability” (in Japanese, https://www.npa.go.jp/cyberpolice/important/2019/201910021.html).

7

© Internet Initiative Japan Inc.

■ Summary of 2019 DDoS Attack Observations

DDoS attacks on Wikipedia, Twitch, and Blizzard created a

stir in September 2019. Of the DDoS attacks IIJ responded to

in 2019, here we summarize those detected by the IIJ DDoS

Protection Service. Table 2 shows the number of attacks and

traffic volume detected by the IIJ DDoS Protection Service.

Of the attacks in Table 2, the SYN Flood and SYN/ACK

attacks use TCP, and the UDP Amplification and UDP Flood

attacks use UDP. A number of application protocols are used

in UDP Amplification attacks, including DNS, NTP, and LDAP.

Table 2 shows the daily average number of attacks for each

month. No month in 2019 was a particular standout for

DDoS attacks. May recorded the highest number of pack-

ets per second, and the longest attack occurred in January.

The maximum number of packets was relatively large in

May, July, and December, but the longest attacks in those

months were under one hour. UDP Amplification attacks

using LDAP and DNS feature prominently in the maximum

traffic and maximum attack duration listings.

■ Key DDoS Attack Topics for 2019

A number of new methodologies suited to DDoS attacks

other than those appearing in Table 2 also popped up in

2019. Three keywords stood out on the DDoS landscape

in 2019.

• Web Services Dynamic Discovery (WSD)

• Apple Remote Management Service (ARMS)

• SYN/ACK reflection

The first, WSD, is a protocol that uses the Simple Object

Access Protocol (SOAP) to locate services and enable

data exchanges in specific network ranges. It uses port

3702/UDP, and it is known to be used on printers and

PCs that run on Windows Vista and up. The possibility of

DDoS attacks using this protocol has been discussed by ze-

roBS GmbH*9. It has been observed that there are roughly

630,000 IP addresses online that respond on 3702/UDP*10.

Our SOC observed an increase in 3702/UDP scanning ac-

tivity in August 2019*11. Figure 2 shows scanning activity

on this port observed at the SOC in 2019. Note that the

*9 zeroBS, “Analysing the DDOS-Threat-Landscape, Part 1: UDP Amplification/Reflection” (https://zero.bs/analysing-the-ddos-threat-landscape-part-1-udp-amplifica-

tionreflection.html).

*10 zeroBS, “New DDoS Attack-Vector via WS-Discovery/SOAPoverUDP, Port 3702” (https://zero.bs/new-ddos-attack-vector-via-ws-discoverysoapoverudp-port-3702.html).
*11 wizSafe, “wizSafe Security Signal August 2019 Observational Report” (in Japanese: https://wizsafe.iij.ad.jp/2019/09/746/).

1

2

3

4

5

6

7

8

9

10

11

12

13.58

15.75

14.00

22.96

16.16

10.93

16.41

18.10

19.20

22.09

13.36

10.38

~179

~284

~652

~97

~886

~148

~738

~91

~130

~310

~70

~607

Month

17.38Gbps

27.89Gbps

19.30Gbps

9.21Gbps

39.29Gbps

8.11Gbps

75.67Gbps

8.77Gbps

11.71Gbps

23.09Gbps

8.24Gbps

61.34Gbps

DNS Amplification

LDAP Amplification

SSDP Amplification

DNS Amplification

LDAP Amplification

SSDP Amplification & SYN/ACK reflection

DNS Amplification

LDAP & DNS Amplification

LDAP & DNS Amplification

Amplification: LDAP, DNS, NTP, etc.

UDP Flood

LDAP & DNS Amplification

Bandwidth

Maximum traffic

3:20

1:18

2:32

0:41

0:41

0:30

0:38

1:35

0:43

1:56

0:25

0:38

SYN Flood

LDAP Amplification

SSDP Amplification

DNS Amplification

DNS Amplification

SSDP Amplification & SYN/ACK reflection

NTP Amplification

UDP Flood

NTP Amplification

LDAP Amplification

UDP Flood

NTP Amplification

Duration (h:mm)

Maximum attack duration

MethodMethod

No. of incidents
(daily avg.)

Approx. max.
packets/sec.
(x10,000)

Table 2: Summary of Observational Data on DDoS in 2019

8

Vol. 46May 2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

number of scans is normalized to a percentage of total

3702/UDP scans observed over the full year such that the

total is 100%.

Figure 2 shows that scans on this port increased from around

August 13. The number of source IP addresses scanning the

port also rose from August 19 through end-August. The ob-

servations in Figure 2 generally match those in BinaryEdge

reports. The reason for the increase in scanning on the

port on February 17 is unclear, but Baidu, Inc. reported on

February 19 that a DDoS attack using WS-Discovery had

occurred*12. Hence, it appears that DDoS attacks exploiting

WS-Discovery had been in use since at least February. But it

was September 2019 when they came into focus in Japan.

And a US-Cert document on UDP Amplification Factors was

updated in December to cite a September article on this type

of attack*13. So it seems that it was actually a few months

after WS-Discovery was first used in attacks that attackers

started to use the protocol for DDoS attacks in earnest.

The second keyword, ARMS, is a service used on Apple

Remote Desktop (ARD). ARD is an application for remotely

controlling macOS devices. ARMS receives commands

from the control console via 3283/UDP. It was found that

there are around 40,000 devices on which ARMS is reach-

able via the Internet*14. Figure 3 shows scanning activity

on the port observed by our SOC in 2019. Note that the

number of scans is normalized to a percentage of total

3283/UDP scans observed over the full year such that the

total is 100%.

*12 Baidu Security Index,”基于ONVIF协议的物联网设备参与DDoS反射攻击”(in Chinese, https://bsi.baidu.com/article/detail/128).

*13 CISA, “Alert (TA14-017A)” (https://www.us-cert.gov/ncas/alerts/TA14-017A).

*14 ZDNet, “macOS systems abused in DDoS attacks” (https://www.zdnet.com/article/macos-systems-abused-in-ddos-attacks/).

0

0.5

1.5

2.5

3

2

1

0

90

80

70

60

50

40

30

20

10

（Date）

（% of total） （No. of addresses）

Ja
n.

1,
20

19

Feb
. 1

, 2
01

9

Mar.
 1,

 20
19

Apr.
 1,

 20
19

May
 1,

 20
19

Ju
n.

1,
20

19

Ju
l. 1

, 2
01

9

Aug
. 1

, 2
01

9

Sep
. 1

, 2
01

9

Oct.
 1,

 20
19

Nov
. 1

, 2
01

9

Dec
. 1

, 2
01

9

No. of source IP addresses■ No. of scans as % of total

0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

700

600

500

400

300

200

100

（Date）

（% of total） （No. of addresses）

Ja
n.

1,
20

19

Feb
. 1

, 2
01

9

Mar.
 1,

 20
19

Apr.
 1,

 20
19

May
 1,

 20
19

Ju
n.

1,
20

19

Ju
l. 1

, 2
01

9

Aug
. 1

, 2
01

9

Sep
. 1

, 2
01

9

Oct.
 1,

 20
19

Nov
. 1

, 2
01

9

Dec
. 1

, 2
01

9

No. of source IP addresses■ No. of scans as % of total

Figure 2: Scanning of 3702/UDP and Number of Source IP Addresses (Jan.–Dec. 2019)

Figure 3: Scanning of 3283/UDP and Number of Source IP Addresses (Jan.–Dec. 2019)

9

© Internet Initiative Japan Inc.

*15 NETSCOUT, “A Call to ARMS: Apple Remote Management Service UDP Reflection/Amplification DDoS Attacks” (https://www.netscout.com/blog/asert/call-arms-

apple-remote-management-service-udp).

*16 Internet Infrastructure Review (IIR) Vol. 42 (https://www.iij.ad.jp/en/dev/iir/042.html).

*17 RFC 4732, “Internet Denial-of-Service Considerations” (https://tools.ietf.org/html/rfc4732#section-3.1).

*18 USENIX, “Hell of a Handshake: Abusing TCP for Reflective Amplification DDoS Attacks” (https://www.usenix.org/system/files/conference/woot14/woot14-kuhrer.pdf).

1.To generate the SYN/ACK packets used in the attack,

the attacker spoofs the source address to match the

attack target and sends the SYN packets with that

spoofed source address to the reflectors.

2.During the three-way handshake, the reflectors send

SYN/ACK packets in response to those SYN packets.

3.Because the source address on the SYN packets is

spoofed, the SYN/ACK packet responses from the re-

flectors are delivered to the attack target’s IP address,

thus consummating the attack.

This type of attack was observed by our SOC in 2018 and

is explained in Section “1.2.2 SYN/ACK Reflection Attack”

of Vol. 42*16. This SYN/ACK reflection attack uses a TCP

Amplification attack technique that was known around

2006*17. In 2014, researchers discovered devices on the

Internet with protocol implementations that result in more

SYN/ACK packets, RST packets, or PSH packets being re-

transmitted than is common*18. It is not clear whether the

devices found in 2014 are actually being used, but the at-

tack principles are the same. At our SOC, TCP Amplification

attacks that use SYN/ACK packets are termed SYN/ACK

reflection attacks, and they were observed frequently from

around July through November.

A distinctive feature of these three attack methods that fea-

tured prominently in 2019 is that they spoof the packet

source address to match the target and recruit reflectors to

mount the DDoS attacks. DDoS attacks like this are called

Distributed Reflection Denial of Service (DRDoS). To per-

form a DRDoS attack, the attacker first looks for hosts and

ports that can be used as reflectors and attempts to exploit

them. So if ports that can be used for DRDoS are made

accessible to anyone on the Internet, they are at risk of

being recruited as reflectors in DRDoS attacks. With DRDoS

attacks like WSD and ARMS, countermeasures are needed

not only on the sender and target but also on the reflectors.

In DRDoS attacks, the administrators of the reflector servers

are not being targeted, but they are unintentionally partic-

ipating in attacks on the targeted servers or networks. So

it is important to make sure you do not unnecessarily leave

Figure 3 indicates that scans of the port increased from

around June 24. And the number of source IP addresses

scanning the port increased from around October 22. So it

is evident that scanning activity was increasing a few days

before the release of the NetScout Systems, Inc. report*15.

Our third keyword is SYN/ACK reflection attacks. This at-

tack takes place in the TCP three-way handshake. SYN

packets with a spoofed source address are sent to many

addresses simultaneously, thereby effectively recruiting the

resulting SYN/ACK packet responses to perform a DDoS at-

tack on the source address. Figure 4 gives an overview of a

SYN/ACK reflection attack.

Below, we describe the flow of events from the launch of a

SYN/ACK reflection attack through to the damage it inflicts

on the victim. Refer to Figure 4 as you read through.

SYN

SYN/ACK

2. Must respond to
 SYN packet

Reflectors

3. Are we under attack?

(Spoofs source address using victim’s IP address)

1. May I transmit?

Attacker(s)

♪

♫
♫

Victim

Figure 4: Overview of a SYN/ACK Reflection Attack

10

Vol. 46May 2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

*19 JPCERT/CC, “Extortion emails threatening DDoS attacks and demanding cryptocurrency” (in Japanese, https://www.jpcert.or.jp/newsflash/2019103001.html).

*20 Radware, “Fancy Bear DDoS for Ransom” (https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/fancybear/).

ports open on the Internet and configure hosts to allow only

the intended access. Not only does this reduce unauthorized

access, it also helps reduce the number of reflectors avail-

able for DDoS attacks and thus makes it more likely that we

can limit attackers’ options for staging DDoS attacks. There

is a DRDoS attack, however, for which it is not easy to

restrict access to reflectors. This is the SYN/ACK reflection

attack. The reason for this is explained in the next section

on the SOC’s observations.

■ Our SOC’s Observations

DDoS attacks using the three methods described targeted

organizations and services in Japan in 2019. Here, we look

at some of the more prominent DDoS attacks that occurred

in Japan in 2019, together with information observed by

our SOC. DDoS attacks using WSD and ARMS aimed at

organizations in Japan were highlighted in a JPCERT/CC

alert in October 2019*19. It is known that in these cases,

not only were WSD and ARMS used for DDoS attacks but

extortion emails demanding cryptocurrency payments were

also received. Attempts apparently motivated by monetary

gain and involving messages threatening to launch DDoS

attacks like this are called Ransom Denial of Service (RDoS)

attacks. RDoS attacks caused a stir not only in 2019 but

in 2017 as well*20. Whether the actors behind the attacks

were the same in both years is unclear, but it is at least

true that DDoS attacks using WSD and ARMS, which had

not been disclosed in 2017, were used in the 2019 cases.

Considering this in conjunction with Figures 2 and 3, it ap-

pears that DDoS attack infrastructure is being progressively

adapted to exploitable protocols.

An example of a SYN/ACK reflection attack being used in a

DDoS attack aimed at companies in Japan is that listed for max-

imum traffic volume and attack length for June in Table 2.

A key feature of SYN/ACK reflection attacks is that they

use any TCP port as the reflector and thus do not exploit

services tied to specific ports like WSD or ARMS. This is

why ports commonly used by Web servers, such as 80/TCP

and 443/TCP, are used. It is important, for example, that the

content of Web servers on the Internet be accessible from

anywhere if it is to be made available to a wide audience. In

this scenario, the firewall will be configured to allow anyone

to access the server. And as such, it will be difficult to deny

access on the server side if the server is used as a reflector

in a SYN/ACK reflection attack. Figure 5 shows the percent-

age breakdown of TCP ports used as reflectors in SYN/ACK

reflection attacks observed by our SOC in 2019.

As Figure 5 shows, the TCP ports used in SYN/ACK reflec-

tion attacks are 80/TCP, 443/TCP, and 25/TCP, which is

used for the Simple Mail Transfer Protocol (SMTP). These

account for over 95% of the total. The “Others” slice rep-

resents many ports including 21/TCP, 22/TCP, and 587/TCP.

So it is evident that the ports recruited to stage SYN/ACK

reflection attacks are TCP ports that are relatively openly

accessible on the Internet. As Figure 5 shows, TCP ports

on which services that permit external access are running

appear prone to exploitation, making it difficult to deal with

SYN/ACK reflection attacks by implementing access con-

trols on the reflectors.

Yet this is not the only challenge in dealing with SYN/ACK

reflection attacks. SYN/ACK reflection attacks are tough to

identify unless you basically have an overview of the entire

network, encompassing all the devices, the attack target, and

so on. Since a slew of SYN packets from the attacking de-

vice actually arrives at each host recruited as a reflector, the

reflector host administrators are liable to conclude that a SYN

Flood attack is underway. In that case, if the source address

in the SYN packets is permanently blacklisted on reflector

hosts, it will not be possible to reach those hosts from the

443/TCP 49.28%

Others 3.24%

53/TCP 1.61%

80/TCP 41.01%

25/TCP 4.86%

Figure 5: Breakdown of Reflector Ports Used
in SYN/ACK Reflection Attacks

11

© Internet Initiative Japan Inc.

*21 wizSafe, “wizSafe Security Signal July 2019 Observation Report” (in Japanese, https://wizsafe.iij.ad.jp/2019/08/717/).

*22 wizSafe, “Observation of DDoS attacks targeting Servers.com” (in Japanese, https://wizsafe.iij.ad.jp/2019/10/764/).

*23 wizSafe, “Examples of TCP SYN/ACK Reflection Attack Observations for October 2019” (in Japanese, https://wizsafe.iij.ad.jp/2019/12/820/).

*24 wizSafe, “Examples of TCP SYN/ACK Reflection Attack Observations for November 2019” (in Japanese, https://wizsafe.iij.ad.jp/2019/12/839/).

*25 Trend Micro, “New Banking Malware Uses Network Sniffing for Data Theft” (https://blog.trendmicro.com/trendlabs-security-intelligence/new-banking-malware-

uses-network-sniffing-for-data-theft/).

*26 Cybereason, “Research by Noa Pinkas, Lior Rochberger, and Matan Zatz” (https://www.cybereason.com/blog/triple-threat-emotet-deploys-trickbot-to-steal-data-

spread-ryuk-ransomware).

*27 Bleeping Computer, “Emotet Botnet Is Back, Servers Active Across the World” (https://www.bleepingcomputer.com/news/security/emotet-botnet-is-back-servers-

active-across-the-world/).

also been reported that malware with information stealing

capabilities downloaded by Emotet can infiltrate target sys-

tems and eventually deploy a ransomware payload called

Ryuk. There have been reports of activity dubbed a triple

threat*26 involving a multistage attack in which information

stolen by these malware programs is used to infiltrate tar-

get systems, on which a ransomware payload called Ryuk

is then deployed. As these changes have unfolded, the

range of attack targets has also shifted to public institu-

tions and private companies.

Internationally, it was observed*27 that C2 servers used by

Emotet went inert from June 2019, but the hiatus did not

last long. It was reported at the end of August 2019 that

the servers had resumed activity, and from September on

IIJ’s email gateway service, the IIJ Secure MX Service, we

detected an increase in malicious emails designed to spread

Emotet infections.

Our SOC observed a lot of infection activity exploiting

Microsoft Word (doc) format attachments. Subsequently,

there was an increase in the number of emails representing

a separate infection vector, namely that the body text con-

tained a URL that downloads a doc file that then infects the

host with Emotet.

attack target’s IP address once the DDoS attack is over. This

is the collateral damage of SYN/ACK reflection attacks.

Examples of devices in Japan being used as reflectors in

SYN/ACK reflection attacks are available on our SOC’s re-

porting site, wizSafe Security Signal*21*22*23*24. Note that

because these are SYN/ACK reflection attacks observed

from the reflector’s point of view, not the target’s, the

information does not indicate the full scale of SYN/ACK re-

flection attacks.

1.3.3 Emotet

■ Overview of Emotet

A malware program called Emotet, which infects hosts by

exploiting emails, came to the fore in the latter half of

2019. This malware was first reported*25 in 2014 by Joie

Salvio, then working at Trend Micro. Emotet was initially

active as a banking trojan targeting information from finan-

cial institutions but bit by bit morphed into a botnet. It also

acquired worm capabilities by adopting a modular frame-

work, giving it the ability to spread various malware and

ransomware payloads. It has thus morphed in recent years

and gained the ability to download malware (Trickbot,

ZeuS, etc.) that steals not only financial institutions’ in-

formation but other confidential information as well. It has

12

Vol. 46May 2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

Opening the Emotet-infecting doc file with Word’s de-

fault settings produces a message asking you to “Enable

Content”, as in Figure 6. Enabling this results in a macro

being executed. If Word is already configured to enable

macros, the user does not see a screen like that in Figure 6

and the macro simply runs automatically. Once executed,

the macro downloads Emotet from a malware distribution

server, which infects your device.

Once it has infected a device, Emotet tries to make the infec-

tion persistent by copying itself to new services, configuring

them to run automatically. It then steals information from the

infected PC and communicates with its C2 server. The infor-

mation stolen includes email text and addresses, and some of

Emotet’s malicious emails exploit this information to disguise

themselves as replies to past emails threads. This is one fac-

tor behind Emotet’s spread. As the multi-stage attack (triple

threat) example demonstrates, Emotet serves as an entry

point for other malware, so the type of damage it ultimately

causes is likely to continue to morph ahead.

■ Observational Data

Below, we report on our SOC’s observations on Emotet.

The stacked bar graph in Figure 7 divides attacks detected

over September–December 2019 into those related to

Emotet and those related other attacks. Date is on the hori-

zontal axis. The vertical axis represents the total number of

detections normalized to a percentage of total detections

over the entire period, such that the overall total is 100%.

The first prominent Emotet detection in the graph is on

September 27. Following that, it was also detected prom-

inently on October 16, 17, 23, and 24. In November

onward, it was detected on more days and more frequently

than in the preceding months. And the detections tended

to be concentrated on weekdays. Detections reached the

overall peak for the period over December 3–4. This was

followed by a spike on December 16, and then detections

on the IIJ Secure MX Service settled down through the rest

of December.

（%）

（Date）
Sep

. 1
, 2

01
9

Sep
. 5

, 2
01

9

Sep
. 9

, 2
01

9

Sep
. 1

3,
20

19

Sep
. 1

7,
20

19

Sep
. 2

1,
20

19

Sep
. 2

5,
20

19

Sep
. 2

9,
20

19

Oct.
 3,

 20
19

Oct.
 7,

 20
19

Oct.
 11

, 2
01

9

Oct.
 15

, 2
01

9

Oct.
 19

, 2
01

9

Oct.
 23

, 2
01

9

Oct.
 27

, 2
01

9

Oct.
 31

, 2
01

9

Nov
. 4

, 2
01

9

Nov
. 8

, 2
01

9

Nov
. 1

2,
20

19

Nov
. 1

6,
20

19

Nov
. 2

0,
20

19

Nov
. 2

4,
20

19

Nov
. 2

8,
20

19

Dec
. 2

, 2
01

9

Dec
. 6

, 2
01

9

Dec
. 1

0,
20

19

Dec
. 1

4,
20

19

Dec
. 1

8,
20

19

Dec
. 2

2,
20

19

Dec
. 2

6,
20

19

Dec
. 3

0,
20

19
0

1

2

3

4

5

6

8

7

9

■Others
■Emotet

Figure 6: Examples of Screens Asking User to Enable Content

Figure 7: Malware Detections in Received Emails (Sep.–Dec. 2019)

13

© Internet Initiative Japan Inc.

been observed from around December 10, which matches

the start of detections in Figure 8. Hence, the traffic de-

tected in Figure 8 is likely accessing URLs in the text of

emails designed to spread Emotet.

Next, of the emails thought to be Emotet propagators ob-

served by our SOC, Table 3 summarizes those that contain

Japanese text in the subject line. Note that Table 3 only

shows the main examples and is not comprehensive.

As Table 3 shows, the subject lines are varied. Some are

just a single word, like “Realize”, “Help”, or “Information”,

and others purport to be invoices/receipts. Also, around

But as if substituting for this, Emotet-related detections on

the IIJ Secure Web Gateway Service then increased. In Figure

8, date is on the horizontal axis, and the vertical axis rep-

resents the number of detections normalized to a percentage

of total in December 2019, such that the total is 100%.

These Emotet-related detections in Figure 8 increased for a

few days starting December 17, right after the email detec-

tions in Figure 7 eased off. We have determined that this

traffic represents attempts to download Emotet-infecting

doc files. Japan’s Information-technology Promotion Agency

also issued an alert*28 stating that Japanese emails contain-

ing links to malicious URLs that cause Emotet infections had

*28 Information-technology Promotion Agency, “Emails designed to propagate a virus called ‘Emotet’” (in Japanese, https://www.ipa.go.jp/security/announce/20191202.html#L11).

Dec
. 3

1,
20

19

Dec
. 3

0,
20

19

Dec
. 2

9,
20

19

Dec
. 2

8,
20

19

Dec
. 2

7,
20

19

Dec
. 2

6,
20

19

Dec
. 2

5,
20

19

Dec
. 2

4,
20

19

Dec
. 2

3,
20

19

Dec
. 2

2,
20

19

Dec
. 2

1,
20

19

Dec
. 2

0,
20

19

Dec
. 1

9,
20

19

Dec
. 1

8,
20

19

Dec
. 1

7,
20

19

Dec
. 1

6,
20

19

Dec
. 1

5,
20

19

Dec
. 1

4,
20

19

Dec
. 1

3,
20

19

Dec
. 1

2,
20

19

Dec
. 1

1,
20

19

Dec
. 1

0,
20

19

Dec
. 9

, 2
01

9

Dec
. 8

, 2
01

9

Dec
. 7

, 2
01

9

Dec
. 6

, 2
01

9

Dec
. 5

, 2
01

9

Dec
. 4

, 2
01

9

Dec
. 3

, 2
01

9

Dec
. 2

, 2
01

9

Dec
. 1

, 2
01

9

（% of total）

（Date）

40

35

30

25

20

15

10

5

Subject lines

December bonus

[Valid till 23:59 today] Renewal discount coupon issued on amazon.com

Account credited

Please issue invoice

Document

Resending message

Reminder

Realize

Final option

Payment advice

Help

Information

New version

Please attach invoice

Receipt

Attachment filenames Notes

<date>.doc

<date>_<random alphanumeric string>.doc

<random alphanumeric string> <date>.doc

<random alphanumeric string>_<date>.doc

<random alphanumeric string>-<date>.doc

Bonus payment advice.doc

December bonus.doc

Winter 2019・performance bonus payment.doc

Please send invoice <random alphanumeric string>-<date>.doc

Merry Christmas <date>.doc

<date> is the date of receipt in

YYYYMMDD format

Date, names of people or

organizations are appended to

the subject line in some cases

Figure 8: HEUR: Trojan.MSOffice.SAgent Detections as Percentage of Total (Dec. 2019)

Table 3: Suspicious Emails Designed to Spread Emotet with Japanese Text in Subject Line

14

Vol. 46May 2020

1. Periodic Observation Report

© Internet Initiative Japan Inc.

Black Friday, some subject lines tout discount coupons for

online shopping, and attachment filenames contain words to

match the season, like “Bonus” or “Christmas”.

■ Countermeasures

As mentioned earlier, Emotet uses information stolen from in-

fected devices to create emails—fake replies etc.—designed

to propagate its spread. This may make it difficult for recip-

ients to judge that something is amiss or suspicious based

on the sender address or email text. To prevent infections

and minimize damage, you should first check your Word set-

tings and disable automatic macro execution if it is on. It is

also important not to inadvertently open any attachments or

manually enable any macros contained in the attachments

that you cannot vet as clean. US-Cert also states that a

policy blocking emails with attachments that have filename

extensions used by malware or file formats that antivirus

software cannot scan is an effective way defend against

entry*29. It also recommends the use of appropriate permis-

sion settings, sender authentication, and the like.

1.4 Conclusion
In this report, we covered prominent security incidents in Japan

in 2019 and looked at a number of examples alongside our

SOC’s observations. Various security threats beyond these ex-

amples are also observed everyday. It is important to properly

understand the landscape and address threats, and this effort

should not be limited to the incidents and events discussed in

Sections 1.2 and 1.3. Some can be addressed with ACL, such

the Elasticsearch issues in 1.3.1, while others can be defended

against at the individual level by applying vulnerability patches

and not casually enabling macros, as discussed in 1.3.3. Our

SOC will continue to periodically publish information on secu-

rity incidents and threats via wizSafe Security Signal (https://

wizsafe.iij.ad.jp), and we hope these updates will prove useful

in your ongoing security efforts.

*29 CISA, “Increased Emotet Malware Activity” (https://www.us-cert.gov/ncas/current-activity/2020/01/22/increased-emotet-malware-activity).

Eisei Honbu

Data Analyst, Security Operations Center, Security Business Department, Advanced Security Division, IIJ

Shun Morita

Data Analyst, Security Operations Center, Security Business Department, Advanced Security Division, IIJ

Junya Yamaguchi

Data Analyst, Security Operations Center, Security Business Department, Advanced Security Division, IIJ

15

© Internet Initiative Japan Inc.

Points to Watch when Acquiring Windows
Memory Images

*1 Internet Infrastructure Review (IIR) Vol. 45, Focused Research (2): Acquiring Forensic Memory Images on Linux (https://www.iij.ad.jp/en/dev/iir/045.html).

*2 The Volatility Foundation (https://www.volatilityfoundation.org/).

*3 Rekall Forensics (http://www.rekall-forensic.com/).

2.1 Acquiring Memory Images on Windows
In Vol. 45, we discussed the acquisition of forensic memory

images on Linux*1. In this edition, we discuss the acquisition

of memory images on Windows.

We use tools such as those listed in Table 1 to acquire full

memory images of Windows systems. We use the Volatility

Framework*2 and Rekall Memory Forensic Framework*3 to

analyze the images.

Windows version upgrades, however, can come with changes

to the memory management framework to improve security

and performance. So you need to use tools compatible with

the new specifications to acquire and analyze memory im-

ages. Not only do we cover memory image acquisition tools

here, we also discuss some key points to watch when actu-

ally acquiring and analyzing images. We also suggest reliable

ways of acquiring individual process dumps.

2.2 Points to Watch when Acquiring/Analyzing
 Memory Images
In this edition, we explain how to deal with the three fea-

tures: the paging files, memory compression, and Virtual

Secure Mode. Paging files existed in Windows prior to ver-

sion 10, but other features were added in updates after the

Windows 10 release.

■ Paging Files

Windows saves a process’s paged-out virtual memory pages

in a paging file called C:\pagefile.sys. Figure 1 shows the

result of extracting notepade.exe from a Windows 10 1809

memory image using Volatility’s procdump tool. This was

done right after notepad.exe started, so the process dump

was successful. Figure 2, meanwhile, shows the result of

trying to dump notepad.exe from a memory image taken

on the same system after memory usage had jumped. This

was unsuccessful because of a page-out. The memory

2. Focused Research (1)

>vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot82.vmem" procdump --pid=4596 -D procdump

Volatility Foundation Volatility Framework 2.6.1

Process(V) ImageBase Name Result

------------------ ------------------ -------------------- ------

0xffffaf86ab950480 0x00007ff7413c0000 notepad.exe OK: executable.4596.exe

>vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot83.vmem" procdump --pid=4596 -D procdump

Volatility Foundation Volatility Framework 2.6.1

Process(V) ImageBase Name Result

------------------ ------------------ -------------------- ------

0xffffaf86ab950480 0x00007ff7413c0000 notepad.exe Error: ImageBaseAddress at 0x7ff7413c0000 is unavailable (possibly due to paging)

Tool

WinPmem memory imager

Comae Technologies

MAGNET RAM Capture

Belkasoft RAM Capturer

Vendor

https://winpmem.velocidex.com/

https://www.comae.com/

https://www.magnetforensics.com/resources/magnet-ram-capture/

https://belkasoft.com/ram-capturer

Table 1: Examples of Memory Image Acquisition Tools

Figure 1: A Successful Volatility procdump

Figure 2: An Unsuccessful Volatility procdump

16

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

*4 Volatility 3 Public Beta: The Insider’s Preview (https://www.osdfcon.org/events_2019/volatility-3-public-beta-the-insiders-preview/).

images used for analysis in Figures 1 and 2 are VMware

Workstation memory snapshots. We used these when pre-

paring this article to make it a bit easier to acquire memory

images in the state that we wanted.

The paging file stores paged-out memory data, so we want

to use it in our analysis if possible. But many memory image

acquisition tools do not collect this file. With WinPmem, the

memory image and paging file can be obtained almost simulta-

neously by specifying pagefile.sys with the “-p” option (Figure

3). It can also be obtained using The Sleuth Kit or FTK Imager,

but keeping the time interval between the memory image and

pagefile.sys as short as possible averts discrepancies.

Obtaining pagefile.sys is pointless if the memory image anal-

ysis tool does not support it. Rekall can analyze memory

images and pagefile.sys seamlessly as a single, complete
memory image. Immediately after the outcome in Figure 2,

we used the command in Figure 3 to acquire a memory

image and pagefile.sys using WinPmem, and then using

Rekall’s procdump plugin, we were able to dump the note-

book.exe process from those files (Figure 4). A look at the

first part of the file shows that it is an MZ header (the proc-

dump plugin dumps the specified process in PE format).

Volatility 2, on the other hand, cannot analyze pagefile.sys

files like Rekall. Presentation slides released for OSDFCon

2019*4, however, contain hints that the currently in-de-

velopment Volatility 3 will support paging files as well as

memory compression as described below, so it looks like

Volatility will support paging file analysis in future.

The WinPmem version used in Figure 3 is 2.1 post4. The lat-

est WinPmem as of this writing (Feb. 2020) is 3.3 rc3, but

analyzing the generated AFF4 file with Rekall produced the

error in Figure 6. We have not inspected all of the relevant

>winpmem-2.1.post4.exe -p c:\pagefile.sys -o memdump.aff4 $ hexdump -C executable.notepad.exe_4596.exe | head -10

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 f8 00 00 00 |................|

00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|

00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |

00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|

00000080 15 48 94 65 51 29 fa 36 51 29 fa 36 51 29 fa 36 |.H.eQ).6Q).6Q).6|

00000090 58 51 69 36 4f 29 fa 36 34 4f f9 37 52 29 fa 36 |XQi6O).64O.7R).6|

$ rekal -f winpmem3.aff4 pslist

Traceback (most recent call last):

 File "/home/user01/Downloads/rekall/rekall-core/rekall/addrspace.py", line 519, in read_partial

 data = self._cache.Get(chunk_number)

 File "/home/user01/Downloads/rekall/rekall-lib/rekall_lib/utils.py", line 147, in NewFunction

 return f(self, *args, **kw)

 File "/home/user01/Downloads/rekall/rekall-lib/rekall_lib/utils.py", line 336, in Get

 raise KeyError(key)

KeyError: 0

(snip)

 File "/home/mkobayashi/envs/win10_rekall2/lib/python3.6/site-packages/pyaff4/aff4_image.py", line 432, in _ReadChunkFromBevy

 "Unable to process compression %s" % self.compression)

RuntimeError: Unable to process compression https://tools.ietf.org/html/rfc1951

$ rekal -f memdump.aff4 procdump --proc_regex="notepad*" --dump_dir="./"

Webconsole disabled: cannot import name 'webconsole_plugin'

 _EPROCESS Filename

-- --------

0xaf86ab950480 notepad.exe 4596 executable.notepad.exe_4596.exe

Figure 3: Acquiring a Memory Image and pagefile.sys with WinPmem

Figure 4: Running procdump with pagefile.sys Figure 5: File Dumped by Rekall’s procdump

Figure 6: Rekall Throws an Error when Passed an AFF4 File Acquired with WinPmem 3.x

1717

© Internet Initiative Japan Inc.

source code, but it looks like the error is due to the default

compression format for saved data as of WinPmem 3.3 rc2

having been changed to deflate, which Rekall does not sup-

port (the default in WinPmem 2.x is zlib). WinPmem’s “-c”

option specifies compression format, but we had the same

processing error even when using zlib. Also, zlib was the

default compression format in WinPmem 3.x versions be-

fore WinPmem 3.3 rc1, but using these versions to generate

AFF4 files that contain the paging file and running them

through Rekall produced a different error (AFF4 files without

the paging file do work).

So when using Rekall as the analysis tool, WinPmem 2.1

post4 can create memory images that are less likely to cause

problems during analysis. That said, we do not recommend

using WinPmem 2.x because it is no longer being developed,

it can cause forced shutdowns on Windows 10, and it does

not support Virtual Secure Mode, which we discuss below.

Note that Rekall development is effectively on hold; a new

version has not been released since December 2017.

Hopefully, if development of Volatility and Rekall moves

forward, they will eventually be able to analyze AFF4 files

generated by WinPmem 3.x, but until such time, acquiring

memory images and paging files using WinPmem 3.x and

exporting the image as shown in Figure 7 is probably the

better option. The exported memory image is in RAW for-

mat, so you can use either Volatility or Rekall for analysis.

■ Memory Compression

Paging of a process’s virtual memory involves paging file

reads and writes, which inevitably degrades system perfor-

mance. SSDs have become widespread in recent years, so

latency is not what it was with HDDs, but performance still

unmistakably drops. But page-in and page-out performance

can be improved by creating a dedicated area in memory to

store paged-out pages in compressed form. The size of the

compressed pages can be viewed in the Memory section

of the Task Manager’s Performance tab (red box in Figure

8). This framework was adopted from Windows 10 1511.

Similar frameworks exist in macOS and Linux.

Analyzing memory images containing compressed memory

data naturally requires a tool that can cope. Unfortunately,

Volatility 2 and Rekall cannot currently analyze compressed

memory data from any OS along with other memory pages

in a seamless fashion.

>winpmem_v3.3.rc3.exe -dd -e */PhysicalMemory -D <export_dir> <image_file>.aff4

Figure 7: Exporting a Memory Image
from an AFF4 File Generated by WinPmem 3.x Figure 8: Size of the Compressed Memory

18

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

*5 SANS DFIR Summit 2019 (https://www.sans.org/event/digital-forensics-summit-2019/summit-agenda).

*6 Paging All Windows Geeks – Finding Evil in Windows 10 Compressed Memory (https://www.blackhat.com/us-19/briefings/schedule/#paging-all-windows-geeks--

finding-evil-in-windows--compressed-memory-15582).

*7 win10_volatility (https://github.com/fireeye/win10_volatility).

*8 win10_rekall (https://github.com/fireeye/win10_rekall).

However, at SANS DFIR Summit Austin 2019*5 and BlackHat

USA 2019*6, FireEye’s Omar Sardar and Dimiter Andonov

announced implementations of Volatility*7 and Rekall*8 that

support Windows 10 memory compression.

Note that as both implementations only support Windows

10 1607 through 1809, memory images from Windows 10

1903 or later cannot be analyzed. As of this writing, the

announced capability does not seem to have been incorpo-

rated into the developers’ source code, but as mentioned

earlier, Volatility is set to add support in the new version.

Figures 9 and 10 show the results of running the hashdump

plugin on the original Volatility and Volatility with support

for memory compression. The hashdump plugin retrieves a

user’s password hash from the registry hive read into mem-

ory. Since the user password hash is stored in compressed

memory, original Volatility gives no output, but Volatility

with support for memory compression is able to print out

the hash.

■ Virtual Secure Mode

The Enterprise and Education editions of Windows 10 1511

and later, and Windows Server 2016 and later, introduce a

virtualization-based security (VBS) isolation mechanism that

uses virtual machines. Security mechanisms such as Device

Guard and Credential Guard are implemented using VBS by

executing virtual machines for specific functions in what

is called Virtual Secure Mode (VSM). These features allow

you to run integrity checks when loading drivers, place ex-

ecution restrictions on applications, and protect credentials.

Running a tool without support for VSM, such as WimPmem

2.x, yields a BSoD as shown in Figure 11.

> vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot64.vmem" hashdump

Volatility Foundation Volatility Framework 2.6.1

> vol.py --profile Win10x64_17763 -f "Windows 10 1809 Feb x64 en-Snapshot64.vmem" hashdump

Volatility Foundation Volatility Framework 2.6.1

localuser01:1001:8492e81f418ee4da82b19ef1f27d39af:17e26cdcb1cf786246e7cf8373a540ca:::

Figure 9: Result of Running hashdump Plugin on Original Volatility

Figure 11: Running Memory Image Acquisition Tools
with no VSM Support Yields a BSoD

Figure 10: Result of Running hashdump Plugin on Volatility with Memory Compression Support

1919

© Internet Initiative Japan Inc.

You need to use Rekall if you want to analyze paging files as

well, but as development has stopped and it has compatibil-

ity issues with WinPmem 3.x, it’s probably not a go-to tool

for many situations. Unfortunately, none of the tools cur-

rently available cater to every case. But the situation looks

set to improve with the release of Volatility 3.

2.3 Reliable Process Dumpings
So far, we have discussed precautions and strategies for

acquiring memory images. But even with these measures,

ensuring the integrity of captured memory images is diffi-

cult. If the host being analyzed is a VM, you can obtain

a complete memory image by taking a snapshot. But on

live systems, various processes will be running when you

By default, a BSoD causes the host to automatically reboot.

The entire contents of memory will of course be erased, so

you need to determine beforehand whether the tool you are

using is compatible with VSM. Note that the latest versions

of the tools in Table 1 do not trigger a BSoD, so consider

updating if you are using an older version.

■ Which Memory Image Analysis Tool Should You Use?

Table 2 summarizes the types of data supported by the

memory image analysis tools we have discussed. Of these,

only Volatility 2 remains in active development and is thus

essentially our recommendation. But Volatility with memory

compression support should be used when analyzing mem-

ory images from Windows 10 1809 or earlier.

Volatility 2

Rekall

Volatility with memory compression support

Rekall with memory compression support

Development has stopped

Supports up to Windows 10 1809

Supports up to Windows 10 1809

Tool

AFF4RAW

Memory images NotesMemory compressionPaging file

*1 Cannot parse AFF4 files generated by WinPmem 3.3 rc2 and later
*2 Cannot parse AFF4 files containing paging files generated by WinPmem 3.3 rc2 and later

*1

*1

*2

*2

Table 2: Comparison of Memory Image Acquisition Tools

20

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

*9 ProcDump - Windows Sysinternals (https://docs.microsoft.com/en-us/sysinternals/downloads/procdump).

capture the memory image, so the data in memory can

change and page-outs can occur. So even if you analyze the

memory image, you may find that the contents of process

memory are not internally consistent.

Figure 12 compares the .text sections of the files dumped in

Figure 1 (left) and Figure 4 (right). As Figure 5 showed, the

MZ header was extracted correctly from the file dumped by

Rekall, but a look at the .text sections of both files shows

that the data values in the file dumped by Rekall are all 0x00

(red area in Figure 12). As discussed, this kind of situation

is unavoidable, but it can hinder process analysis. In cases

like this, dumping each process from userland individually

can give internally consistent process dumps (dumping a

process triggers memory access, causing the OS to page-in

anything that has been paged out, enabling you to capture

all of the process’s virtual memory pages).

Several tools for dumping processes exist. Windows

Sysinternals ProcDump*9 is a common one. Note that it is

different from the plugins of the same name that exist for

Volatility and Rekall. Also, Volatility’s and Rekall’s procdump

generate PE format files, whereas Sysinternals ProcDump

uses the crash dump format.

Running this with the command in Figure 13 will dump the

process with an ID of 4596. You can also specify process

name instead of process ID. It’s also useful to pass in the

>procdump64.exe -ma 4596

ProcDump v9.0 - Sysinternals process dump utility

Copyright (C) 2009-2017 Mark Russinovich and Andrew Richards

Sysinternals - www.sysinternals.com

[12:05:29] Dump 1 initiated: C:\Users\localuser01\Desktop\tools\notepad.exe_200206_120529.dmp

[12:05:29] Dump 1 writing: Estimated dump file size is 107 MB.

[12:05:32] Dump 1 complete: 107 MB written in 3.8 seconds

[12:05:33] Dump count reached.

Figure 12: Process Dump Discrepancies

Figure 13: Dumping a Process Using the ProcDump Command

2121

© Internet Initiative Japan Inc.

*10 Download Debugging Tools for Windows - WinDbg (https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools).

*11 Debugging Using WinDbg Preview (https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-using-windbg-preview).

*12 7-Zip (https://www.7-zip.org/).

“-ma” option to dump all of the memory used by the pro-

cess. The crash dump generated can be read using tools like

WinDbg*10*11. Figure 14 is a screenshot of WinDbg reading

in the crash dump generated by ProcDump after Figure 4.

The code that was missing with Rekall’s procdump is now

present (red area in Figure 14). Using ProcDump like this

ensures a reliable process dump.

2.4 Scripted Process Dumps and Order of Steps
 to Preserve Artifacts
Creating a script in PowerShell or the like makes it easy

to run ProcDump for all processes. Dumping all processes,

however, will yield tens of GB or more. This is no problem

if there is enough space on the storage destination, but if

you want to keep the data on a small USB memory stick or

external SSD, compressing the data with a tool like 7-Zip*12

after each dump is the way to go. You also need to specify

the right compression command option to ensure that the

temporary files created when compressing files are not writ-

ten to the disk being analyzed. With 7-Zip, the “-w” option

specifies the working folder, so you should use this to spec-

ify the disk on which you will be preserving the artifacts.

When running ProcDump, we skip protected processes like

System and Registry (trying to dump those results in an

error). These scripts need to run in various system environ-

ments, so they are often created using PowerShell (installed

on Windows by default) or as a batch file, but there are

some key points to note.

Launching the PowerShell prompt (powershell.exe) or

command prompt (cmd.exe) will also launch the console

Figure 14: Inspecting the Process Dump in WinDbg

22

Vol. 46May 2020

2. Focused Research (1)

© Internet Initiative Japan Inc.

window host (conhost.exe). If you try to dump the conhost.

exe hosting the prompt that launched the PowerShell script

or batch file that runs ProcDump, the ProcDump process

will stop. This is because ProcDump suspends a process

when dumping it. Since conhost.exe is the process handling

the console’s IO buffer and display, suspending this process

also stops the ProcDump instance running in the console

(Figure 15). If necessary, you can analyze conhost.exe by

acquiring a memory image using WinPmem.

Depending on the system environment, executing the script

can result in several hundred, or more, process dump and

file compression cycles. So from a forensics point of view,

it may be good practice to preserve the artifacts according

to ordered steps such as those in Figure 16.

2.5 Conclusion
We have discussed key points to note when acquiring and

analyzing memory images on Windows. We also looked

at process dumping with a view to aiding image integrity

when acquiring memory images. Many articles dealing with

memory forensics imply that the preservation task can be

completed by acquiring a memory image using WinPmem

or the like, but we hope it is now evident that this is not

always sufficient. That said, dumping and compressing all

processes is time consuming, so you need to decide on

whether to do this in accord with the situation and policies

in effect when the incident response is initiated.

Minoru Kobayashi

Forensic Investigator, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Kobayashi is a member of IIJ-SECT, mainly dealing with digital forensics. He works to improve incident response capabilities and in-
house technical capabilities.
He gives lectures and training sessions at security events both in Japan and abroad, including Black Hat, FIRST TC, JSAC, and Security
Camp events.

1. Memory image

2. Artifacts that can be preserved as individual files from disk,

 such as MFT, Prefetch, and event logs

3. Process dumps

4. Disk image

Figure 15: Dumping conhost.exe Causes ProcDump to stop Figure 16: Example of Ordered Steps for Artifact Preservation

2323

© Internet Initiative Japan Inc.

Binary Program Analysis
With No Prior Knowledge of Analysis Target

3. Focused Research (2)

3.1 Introduction
This article describes binary program analysis technology

that is assumption-free in that it requires no prior knowledge

of the analysis target, which is being developed at the IIJ

Research Laboratory.

Program analysis is a set of techniques for analyzing how

programs behave. It can be broadly divided into dynamic

analysis, whereby the program is actually run and its behav-

ior is observed, and static analysis, in which the program’s

structure is reviewed without executing it.

Examples of dynamic analysis include unit tests for checking

the integrity of program features, and fuzzing tools that feed

a program random input to test its behavior. Examples of

static analysis include optimization analysis—which seeks

to enhance runtime computational efficiency by eliminating

unnecessary code, precomputing operations, and so on—

and static type checking to ensure data type consistency

so as to avoid runtime errors caused by the program han-

dling data in unintended ways. Whether dynamic or static,

these sorts of program analysis techniques are incorporated

into integrated development environments (IDEs), helping to

streamline development and reduce bugs.

So these program analysis techniques are intended primarily

for developers. Meanwhile, you may want to analyze the be-

havior of programs (binary programs) that are already in the

wild. For instance, you may want to know how a suspected

malware program behaves or check if firmware from a third

party does anything suspicious. In such cases, the person

seeking to analyze the program will not always have access

to the source code or information on what compiler was

used to create it. Dynamic analysis is still possible here. For

example, quarantine systems that run suspected malware in

a sandboxed environment to analyze its behavior are used

in practice. But a problem with dynamic analysis is that only

the control path actually executed can be analyzed. So dy-

namic analysis can be difficult in the case of anti-analysis

malware that alters its behavior depending on the execution

environment or firmware that has a backdoor enabling it to

change its behavior according to specific input.

So to comprehensively analyze the behavior of binary pro-

grams, we need to perform static analysis in addition to

dynamic analysis. The difficulty involved in the static anal-

ysis of binary programs can depend on how much prior

knowledge you have about how the program was cre-

ated. For example, if you can deduce what compiler was

used, it may be possible to reconstruct the original source

code based on the code patterns the compiler produces.

This technique is called decompilation. If you can decom-

pile a program, you can then use existing static analysis

techniques on the reconstituted source code to analyze the

program’s behavior.

That said, you will not always have such prior knowledge

available, or know whether you can trust it if it is available.

The IIJ Research Laboratory is developing static analysis

technology that can be applied to binary programs about

which you have almost no prior knowledge, or in other

words, when the program’s origins are an enigma.

In the following sections, we discuss the difficulty of binary

program static analysis and why the difficulty can increase

depending on whether you have prior knowledge.

24

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

3.2 Binary Program Analysis
T.A program written in a language such as C/C++ (the

source code) is converted by software called a compiler into

a series of simple machine instructions a CPU can execute.

This sequence of machine instructions is encoded into byte

data according to the encoding method specified for the

CPU architecture. A program expressed as a string of byte

data like this is called binary code.

The binary code is embedded in a file with a specific format

that makes it an executable file. In addition to the binary

code, the executable also contains metadata specifying

where to position the program in memory at runtime, where

in the program to start execution from (the entry address),

and what external library functions are called during execu-

tion. In this article, we treat these sorts of executables as

binary programs. Static analysis of binary programs in the

absence of source code is called binary code analysis.

A familiar example is standard virus detection software,

which looks for malware signatures in binary code using a

database of such signatures—distinctive byte data strings

extracted from known malware. Systems that use machine

learning on other metadata contained in executable files to

detect unknown malware have also appeared in recent years.

Methods of analyzing binary code as mere byte data like

this are suitable for automatic program classification appli-

cations such as malware detection, but to learn about how

a program will behave in detail, you need to analyze it as a

program and not just as a sequence of data. In this article,

we call this binary program analysis.

With binary program analysis, you need to extract and re-

construct the program control structure from the binary

code. A disassembler (Figure 1) is the first step. As men-

tioned earlier, machine instructions are converted into byte

data according to the rules for each architecture. Doing this

in reverse—converting byte data back into machine instruc-

tions—is called disassembly.

Simple disassemblers use linear sweeping, which involves

disassembling instructions in sequence from the beginning

of the binary code. If it encounters non-program data, a

linear sweeping disassembler may not be able to correctly

disassemble the program from that point onward. Advanced

assemblers like IDA Pro, on the other hand, use recursive

descent to recursively follow direct jump instructions (a pro-

gram control instruction for which the destination address is

specified as part of the instruction) starting from the entry

address (Figure 2). Once a recursive descent disassembler

encounters an indirect jump instruction (control instruction

for which the destination address is stored in a register or

memory), it can proceed no further. This is because, in gen-

eral, the destination address of an indirect jump instruction

presents an undecidable problem for static analysis, so it is,

in theory, difficult to proceed.

Next start position?Unreachable area

MOV EAX, 12345678
・・・
JMP +20

INC EDI
・・・
CALL EAX

?

Assembly

Disassembly

mov eax, [ebx + ecx]

Machine instructions

8B 04 0B

Byte code

Figure 1: Disassembler Figure 2: Recursive Descent Disassembler

25

© Internet Initiative Japan Inc.

be able to correctly reconstruct the program structure. It has

also been reported that identifying the position of functions

can be problematic even with programs generated by a com-

piler if the preprocessing and post-processing code patterns

have been omitted due to heavy optimization*1.

Indirect jump instructions are one reason it is not possible

to recreate program structures using disassemblers alone.

Using static data analysis to statically resolve indirect jump

instruction destination addresses to the extent possible

is called control flow reconstruction. As discussed, at-

tempts to statically resolve the destination of indirect jump

instructions run up against an undecidable problem, so a

complete solution is not possible. Previous research such

as CodeSurfer/x86*2 and Jakstab*3 has used abstract inter-

pretation to seek approximate solutions to the destination

address problem.

There is one more difficulty with control flow reconstruction,

however. As discussed, programs consist of several func-

tions. If function identification is first performed to divide a

program into separate functions, intra-procedural program

analysis, which analyzes each function independently, can

be used. If you have insufficient prior knowledge to per-

form function identification accurately, you will need to use

whole program analysis. Even if function positions cannot

be identified in advance, programs are actually divided into

a number of functions. So with whole program analysis,

context-dependency must be taken into account.

Recursive descent, therefore, will result in unreachable

areas—areas that cannot be reached by direct jump instruc-

tions alone. Disassemblers like IDA Pro use various heuristics

to identify potential starting positions within these unreach-

able areas and restart the recursive-descent process. One

such heuristic is a method is function identification.

Program development generally involves breaking the pro-

gram logic into separate functional units, referred to as

functions or procedures, to enhance code reusability and

development efficiency. How parameters are passed to

functions, and the way in which return values (the result

of a function’s calculations) are received, is determined ac-

cording to the calling conventions of the CPU, operating

system, etc. When functions are compiled, the compiler

inserts the necessary preamble and post-amble code ac-

cording to the calling conventions. This processing produces

specific patterns depending on the compiler, so by finding

these patterns, you can infer the location of functions. This

type of analysis is called function identification.

The entire program can be disassembled by using function

identification to break a program into functions and then

recursively descending through each of them (Figure 3).

The use of function identification to determine the starting

position of functions is premised on the assumption that the

program was compiled according to the calling conventions.

If this assumption does not hold, the disassembler will not

*1 Andriesse2016: Andriesse, Dennis, et al. “An in-depth analysis of disassembly on full-scale x86/x64 binaries” 25th {USENIX} Security Symposium ({USENIX}

Security 16). 2016.

*2 Balakrishnan2005: Balakrishnan, G., Gruian, R., Reps, T., & Teitelbaum, T. (2005, April). CodeSurfer/x86—A platform for analyzing x86 executables. In Interna-

tional Conference on Compiler Construction (pp. 250-254). Springer, Berlin, Heidelberg.

*3 Kinder2008: Kinder, J., & Veith, H. (2008, July). Jakstab: A static analysis platform for binaries. In International Conference on Computer Aided Verification (pp.

423-427). Springer, Berlin, Heidelberg.

int f(int n) {
...
 return n;
}

push ebp
mov ebp, esp

Compiler

Preprocessing

pop ebp
ret

Post-processing

...

Figure 3: Preprocessing and Post-processing of Functions

26

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

For example, if a function is called from multiple program lo-

cations, control is transferred from each function call to the

function, and once the function’s activity is complete, con-

trol returns to the return point. After control has returned, if

you want to refer to what the program state was before the

function call, the call and return paths must match. This depen-

dence of the analysis on paths is called context-dependency.

If this context-dependency is not accounted for, distinguishing

between multiple calls is not possible, so irrelevant contex-

tual information muddies the mix when program state is being

analyzed after a function call returns, significantly reducing

analysis accuracy. Additional processing is needed to resolve

context-dependency, such as the use of the stack to ensure

consistent handling of function calls and returns. This sort of

analysis is called inter-procedural program analysis.

So to enable highly accurate binary program analysis when

function positions cannot be identified, you need to estimate

function call/return positions during the analysis process.

With existing static analysis methods, function positions are

inferred by assuming that minimum calling conventions are

followed (on Intel x86 architecture, for example, the CALL

instruction is used to call functions and the RET instruction

is used for returns).

Even the minimum calling conventions, however, cannot

be guaranteed if you have no prior knowledge of the tar-

get program. For instance, the CALL/RET instructions may

be used for purposes other than function calls/returns, or

conversely, they could be replaced by other instructions. So

to apply existing static analysis methods to binary program

analysis, you need to have prior knowledge that guarantees

the “goodness” of the target program.

The difficulties in binary program analysis discussed so far

can be summarized as follows.

1.Disassemblers do not know the destination of indirect

jump instructions.

2.In order to determine the destination of indirect jump

instructions using existing static analysis methods,

the program must first be divided into functions.

3.To identify the location of functions in a binary pro-

gram, you need to make assumptions about, e.g.,

what sort of compiler was used and whether calling

conventions are followed.

As such, existing binary program analysis methods require

that you have prior knowledge about the conditions under

which the program being analyzed was created, and that

this knowledge is reliable.

Our method*4 uses analysis of an intermediate represen-

tation that we propose to identify parts of a program as

functions during the control flow reconstruction process,

the aim being to make static program analysis applicable

even in the absence of prior knowledge (i.e., even if the

program is “bad”).

*4 Izumida2018: Izumida, T., Mori, A., & Hashimoto, M. (2018, January). Context-Sensitive Flow Graph and Projective Single Assignment Form for Resolving Con-

text-Dependency of Binary Code. In Proceedings of the 13th Workshop on Programming Languages and Analysis for Security (pp. 48-53).

27

© Internet Initiative Japan Inc.

3.3 Binary Program Analysis Using
 the Projective Single Assignment Form
In this section, we describe the method we are working on.

As a working example, we use the 32-bit Intel x86 architec-

ture program shown in Figure 4.

In the example in Figure 4, the function code (A) is called

twice, but instead of using the CALL/RET instructions, the

code stores the return address in the EBX register and then

jumps to (A), at which point it increments the ECX register

by 1 and then jumps to the address stored in EBX, which

takes it back to the instruction following the call. Existing

analysis tools like IDA Pro cannot recognize code like this as

function calls because it does not use the standard CALL/

RET style (Figure 5).

In our research, we convert each machine instruction into

simple assignment forms, and then further convert this into

static single assignment (SSA) form. SSA is an internal rep-

resentation format used in compiler optimization analysis. It

changes variable names so that each variable definition is

unique. This clarifies the definition-and-use (def-use) rela-

tionship of each variable, making it easy to understand the

[Working example]

00401000: xor ecx, ecx　　　　
00401002: mov ebx, 0x40100c
00401007: jmp 0x401017
0040100c: mov ebx, 0x401016
00401011: jmp 0x401017
00401016: hlt

00401017: inc ecx ; (A)
00401018: jmp ebx

Figure 4: Working Example on 32-bit Intel x86 Architecture

Figure 5: Example of Disassembly in IDA Pro

28

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

flow of information. For example, in Figure 6, the two ECX

assignments are differentiated as ECX1 and ECX4.

Here, the code ends with an indirect jump to the return

address stored in the EBX register (the jump instruction is

expressed as an assignment to the program counter [EIP]).

If you trace the definition of EBX2 on the the right-hand side

of the assignment, you can easily see that it is 0x40100c.

So the destination address of this indirect jump expands to

0x40100c.

Figure 7 graphs the point up to where the second (A) call

is completed. SSA expresses information merge points by

introducing a pseudo-function called the Φ-function. For ex-

ample, in the assignment statement EBX8 ← Φ8 (3: EBX2, 7:

EBX6), the EBX register values EBX2 from node 3 and EBX6

from node 7 merge and are newly assigned to the variable

EBX8. As before, if we trace the definition of EBX8, it is ex-

pressed with a Φ-function as Φ8 (3:0x40100c,7:0x401016).

This means that if control reaches node 8 from node 3, the

EBX register takes the value of 0x40100c, whereas if con-

trol comes from node 7, it takes the value 0x401016, so

there is a merging of information. In our research, we refer

to this changing of destination addresses due to information

merging at certain points as context-dependency. Here, the

code in the range from 0x401017 to 0x401018 is reused

by multiple contexts, so we can infer that this is a function.

If context dependency is detected in this way, our method in-

serts a pseudo-function called the Π-function (Figure 8). The

Π-function acts as a projection function for the Φ-function.

For example, the expression Π3 → 8 (…) means that the

information coming from node 3 is extracted from the in-

formation merged at node 8, so it is evaluated as Π3 → 8 (Φ8

(3: X, 7: Y)) ⇒ X. This extension of the SSA form with Π

projective functions is our own novel approach, which we

call the projective single assignment (PSA) form.

ECX ← 0
401000 xor ecx, ecx1

EBX ← 40100c
401002 mov ebx, 0x40100c2

3
EIP ← 401017
401007 jmp 0x401017

ECX ← ECX + 1
401017 inc ecx4

EIP ← EBX
401018 jmp ebx5

ECX1 ← 0
401000 xor ecx, ecx1

EBX2 ← 40100c
401002 mov ebx, 0x40100c2

3
EIP3 ← 401017
401007 jmp 0x401017

ECX4 ← ECX1 + 1
401017 inc ecx4

EIP5 ← EBX2

401018 jmp ebx5

SSA

ECX1 ← 0
401000 xor ecx, ecx1

EBX2 ← 40100c
401002 mov ebx, 0x40100c2

3
EIP3 ← 401017
401007 jmp 0x401017

EBX6 ← 401016
40100c mov ebx, 0x4010166

EIP7 ← 401017
401007 jmp 0x4010177

 ECX8 ← Φ8(3:ECX1, 7:ECX4)
EBX8 ← Φ8(3:EBX2, 7:EBX6)８

ECX4 ← ECX8 + 1
401017 inc ecx4

EIP5 ← EBX8

401018 jmp ebx5

ECX1 ← 0
401000 xor ecx, ecx1

EBX2 ← 40100c
401002 mov ecx, 0x40100c2

3
EIP3 ← 401017
401007 jmp 0x401017

EBX6 ← 401016
40100c mov ecx, 0x4010166

EIP3 ← 401017
401007 jmp 0x4010177

 ECX9 ← Π3→8(ECX4)
EBX9 ← Π3→8(EBX8)9

 ECX10 ← Π7→8(ECX4)
EBX10 ← Π7→8(EBX8)10

 ECX8 ← Φ8(3:ECX1, 7:ECX9)
EBX8 ← Φ8(3:EBX2, 7:EBX6)８

ECX4 ← ECX8 + 1
401017 inc ecx4

EIP5 ← EBX8

401018 jmp ebx5

401016 hlt11

Figure 6: SSA Form: Up to the end of the first (A) call

Figure 7: SSA Form: Up to the end of the second (A) call Figure 8: PSA Form: Insertion of Π-functions

29

© Internet Initiative Japan Inc.

area will be overwritten during the for loop is expressed in

the PSA form as follows.

This means whether EBP1 + 4 ≤ EBP1 - 10 + i2 ≤ EBP1 + 8

is satisfied under the condition that i2 < 10. Since i2 is de-

fined as Φ (i1, i4) and i4 is defined in the loop, i2 will change

within the loop. If an i2 value that satisfies this condition

exists, there is a possibility of the return address value being

overwritten during the loop. In this case here, however, it

is easy to see that no such i2 value exists. In other words,

it is guaranteed that this loop will not change the return

address area.

In practice, loop conditions and the memory overwrite con-

ditions appear in more complicated forms. Finding loop

invariants (conditions that do not change within a loop) is

important in determining whether conditions such as these

that vary within loops are satisfiable. Research on analysis

methods for automatically evaluating such loop invariants

has advanced in recent years and has been implemented in

SMT solvers such as Z3. In our research, our objective is

to extract loop conditions and memory overwrite conditions

from binary programs and automatically calculate loop in-

variants using an SMT solver. This analysis will not always

determine a solution within a specific timeframe, but if it

can determine there to be no possibility of an overwrite, it

Using Π-functions, the value of the ECX register when the pro-

gram ends (node 11), for example, can be derived as follows.

So by extracting context-dependency during the reconstruc-

tion process, we are able to resolve programs even if they

do not follow calling conventions..

3.4 Application: Verifying Buffer-Overflow Safety
NThe projective single assignment adds not only projective

Π-function but also conditional Γ-functions, which record

the branching condition at each conditional branch. If loops

are used within a function to rewrite data on the stack, the

use of Γ-functions makes it possible to determine whether

it is possible for the return address on the stack to be

overwritten.

For example, converting the program in Figure 9 to PSA

form and simplifying it results in Figure 10.

Here, Ld (M, A, N) denotes an N-byte value being read from

address A in memory state M, and St(M,A,X,N) denotes the

N-byte value X being set at address A in memory state M.

In this example, when the function finishes, the program

jumps to the 4-byte return address stored in the stack loca-

tion expressed as EBP1 + 4. The condition under which this

void f() {
 char buf [10];
 for (int i = 0; i < 10; i ++)
 buf[i] = 0;
 return;
}

buf[10]

Return address

EBP1-10

EBP1

EBP1+4

ECX10 ⇒ Π7→8(ECX4) ⇒ Π7→8(ECX8) + 1 ⇒ Π7→8(Φ8(3:ECX1, 7:ECX9)) + 1

⇒ ECX9 + 1 ⇒ Π3 → 8(ECX4) + 1 ⇒ Π3→8(ECX8) + 2 ⇒ Π3→8(Φ8(3:ECX1, 7:ECX9)) + 2

⇒ ECX1 + 2 ⇒ 2

Γ(i2 < 10, EBP1 + 4 ≤ EBP1 − 10 + i2 ≤ EBP1 + 8)

M3 ← Γ(I2 < 10, M2)

 I3 ← I2 + 1
M4 ← St(M3, EBP1 -10 + I2, 0, 1)

M5 ← Γ(I2 ≥ 10, M2)

I1 ← 0

 M2 ← Φ(M1, M4)
I1 ← Φ(I1, I4)

EIP ← Ld(M5, EBP1 + 4, 4)

Figure 9: Example Program Figure 10: Loop

30

3. Focused Research (2)

Vol. 46May 2020

© Internet Initiative Japan Inc.

*5 Cha2012: Cha, S. K., Avgerinos, T., Rebert, A., & Brumley, D. (2012, May). Unleashing mayhem on binary code. In 2012 IEEE Symposium on Security and Privacy

(pp. 380-394). IEEE.

*6 Wang2017: Wang, F., & Shoshitaishvili, Y. (2017, September). Angr-the next generation of binary analysis. In 2017 IEEE Cybersecurity Development (SecDev) (pp.

8-9). IEEE.

can guarantee that no buffer overflow will occur. And if it

does identify the possibility of an overwrite, you can investi-

gate the conditions under when overwrites can occur.

We are currently studying the application of this method to

technology that detects vulnerabilities, such as buffer over-

flows, and the presence of backdoors, such as Trojan horses,

in embedded firmware in AI edge devices and the like.

3.5 Conclusion
This article has described the assumption-free binary pro-

gram analysis technology being developed at the IIJ Research

Laboratory. Existing static analysis methods require that a

program is first divided into separate functions, but doing

this requires prior knowledge of or assumptions about how

the program was generated. Using an extension of the SSA

form, our method makes it possible to identify the location

of functions by evaluating the destination of indirect jump

instructions while also extracting context-dependency. This

means that program analysis can be performed even on “bad”

programs about which no prior knowledge can be obtained.

However, static binary program analysis involves undecid-

able problems, so no analysis method can provide a complete

solution. Even with our method, we halt the evaluation and

generate an approximate solution when the evaluated form

becomes bloated and it appears that finding a static solution

will be difficult.

Another method for binary program analysis is symbolic ex-

ecution. This method of analysis sits somewhere between

static and dynamic analysis. In 2016, mayhem*5 and angr*6,

analysis tools that use symbolic execution, were among the

leaders in the Cyber Grand Challenge, an IT security auto-

mation contest created by DARPA. Symbolic execution can

detect if a program might produce dangerous states such

as buffer overflows. But proving that a program is safe—

meaning that it cannot produce any dangerous states at

all—requires exhaustive execution, which is not something

that symbolic execution is suited to. In this respect, we be-

lieve symbol execution and our method can complement

each other.

Looking ahead, we aim to develop binary program analysis

tools that integrate our method with other analysis tech-

niques such as symbolic execution and dynamic analysis.

Acknowledgment

This research is carried out as part of “Research &

Development on Fundamental Technologies Required for

Comprehensive Security Evaluation of AI Edge Devices”

work commissioned by Japan’s New Energy and Industrial

Technology Development Organization (NEDO).

Tomonori Izumida

Researcher, IIJ Innovation Institute (since 2015). PhD (information science).

31

©Internet Initiative Japan Inc. All rights reserved.
 IIJ-MKTG020-0044

Internet Initiative Japan Inc.

Address: Iidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, Japan
Email: info@iij.ad.jp URL: https://www.iij.ad.jp/en/

M
ay

 2
02

0
Vo

l.4
6

About Internet Initiative Japan Inc. (IIJ)

IIJ was established in 1992, mainly by a group of engineers who
had been involved in research and development activities related
to the Internet, under the concept of promoting the widespread
use of the Internet in Japan.
IIJ currently operates one of the largest Internet backbones
in Japan, manages Internet infrastructures, and provides
comprehensive high-quality system environments (including
Internet access, systems integration, and outsourcing services,
etc.) to high-end business users including the government and
other public offices and financial institutions.
In addition, IIJ actively shares knowledge accumulated through
service development and Internet backbone operation, and
is making efforts to expand the Internet used as a social
infrastructure.

The copyright of this document remains in Internet Initiative Japan Inc.

(“IIJ”) and the document is protected under the Copyright Law of Japan

and treaty provisions. You are prohibited to reproduce, modify, or make

the public transmission of or otherwise whole or a part of this document

without IIJ’s prior written permission. Although the content of this

document is paid careful attention to, IIJ does not warrant the accuracy and

usefulness of the information in this document.

	Executive Summary
	1.	Periodic Observation Report
	1.1	Introduction
	1.2 2019 Security Topics
	1.3	Observational Data
	1.3.1 Information Leaksfrom Externally Exposed Elasticsearch Servers
	1.3.2	DDoS Attack Observations
	1.3.3	Emotet

	1.4	Conclusion

	2.	Focused Research (1)
	2.1	Acquiring Memory Images on Windows
	2.2	Points to Watch when Acquiring/Analyzing		Memory Images
	2.3	Reliable Process Dumpings
	2.4 Scripted Process Dumps and Order of Steps to Preserve Artifacts
	2.5	Conclusion

	3.	Focused Research (2)
	3.1	Introduction
	3.2	Binary Program Analysis
	3.3 Binary Program Analysis Using the Projective Single Assignment Form
	3.4	Application: Verifying Buffer-Overflow Safety
	3.5	Conclusion

