
© Internet Initiative Japan Inc.

Acquiring Forensic Memory Images on Linux

*1 Internet Infrastructure Review (IIR) Vol. 32, 1.4.1 Creating Profiles for the Volatility Framework (https://www.iij.ad.jp/en/dev/iir/032.html).

*2 LiME (https://github.com/504ensicsLabs/LiME).

*3 crash (https://people.redhat.com/anderson/).

*4 Velocidex/c-aff4 (https://github.com/Velocidex/c-aff4/releases).

*5 Linux · volatilityfoundation/volatility Wiki (https://github.com/volatilityfoundation/volatility/wiki/Linux#acquiring-memory).

2.1 Linux Memory Dump Toolsn
We use the Volatility Framework when performing memory

analysis for incident response and forensics. In IIR Vol. 32,

“1.4.1 Creating Profiles for the Volatility Framework,” we ex-

plained the procedure for creating a Volatility profile for Linux*1.

Here, we explain how to acquire Linux memory images for

analysis in Volatility. Several tools for acquiring Linux mem-

ory images exist, but here we will look at LiME*2 and crash*3.

We will also describe a memory image acquisition method

that minimizes the impact on disk forensics. Note that this

article assumes your system is running CentOS 7.7-1908.

Another tool for acquiring memory images is Linpmem*4, but

it did not work well in our test environment, so we decided

to leave it out.

Note that in this article we refer to the machine being ex-

amined as the “target host” and the machine on which the

examination is performed as the “examination host”. To

avoid changing data on the target host as much as possible,

compilation of the analysis tools, etc., should be done on a

separate host.

2.2 What is LiME?
LiME is short for Linux Memory Extractor, and is the tool

that Volatility recommends*5 for acquiring memory images.

Since LiME operates as a Linux kernel module, it must be

compiled against the same kernel version as that running on

the target host.

2.3 Compiling LiME
To compile LiME, you first obtain the LiME source code by

running the git command in Figure 1 or by downloading the

zip file from LiME’s GitHub page and extracting it into a

directory. The src subdirectory inside the source code di-

rectory contains a Makefile, so running the make command

from within that subdirectory will generate the LiME module

2. Focused Research

$ git clone https://github.com/504ensicsLabs/LiME.git

$ sudo yum install kernel-devel gcc

$ cd LiME/src

$ make

$ ls

disk.c lime-3.10.0-1062.el7.x86_64.ko lime.o Makefile.sample tcp.o

disk.o lime.h main.c modules.order

hash.c lime.mod.c main.o Module.symvers

hash.o lime.mod.o Makefile tcp.c

Figure 1: Cloning the LiME Git Repository

Figure 2: Compiling the LiME Module Figure 3: Installing the kernel-devel Package

16

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

(see the red outline in Figure 2). Certain packages are re-

quired to compile LiME (kernel-devel, gcc, etc.), so if the

make command produces an error, try installing the corre-

sponding packages as shown in Figure 3.

Note that unless you specify a version at install time, the lat-

est version of the kernel-devel package will be installed. If a

different version of the kernel is running on the target host,

run a search using the yum command, install the appropriate

kernel-devel package version, and then compile the LiME

module, as shown in Figure 4. You need to pass the KVER

option to the make command when doing this.

If the OS version differs, you can generate a LiME module

for that version by downloading the corresponding ker-

nel-devel package separately, extracting it using the cpio

command, and then running make with the KVER and KDIR

options specified, as shown in Figure 5. KVER specifies the

kernel version, and KDIR specifies the directory where the

kernel-devel package was extracted. You also need to install

any other required packages (on our machine, we needed to

install elfutils-libelf-devel). We confirmed that the LiME mod-

ule generated in this manner works on CentOS 8 (1905).

2.4 Dumping Memory to an External Drive
When acquiring memory images, you need to minimize disk

write operations on the target host. In particular, the mem-

ory image is almost always several GB or more is size, so

writing it to the target host’s disk would cause many unused

areas to be overwritten, which could greatly affect forensic

analysis of the disk.

So if you have physical access to the target host, you can

connect a USB stick or mobile SSD containing the LiME mod-

ule to it and load the LiME module into the kernel from there

via the insmod command, as shown in Figure 6. This will

let you acquire a memory image while barely writing any-

thing to the target host’s disk. The double quotes in Figure

$ yum --showduplicates search kernel-devel

$ sudo yum install kernel-devel-3.10.0-1062.1.2.el7.x86_64

$ make KVER=3.10.0-1062.1.2.el7.x86_64

$ curl -OL http://ftp.iij.ad.jp/pub/linux/centos/8.0.1905/BaseOS/x86_64/os/Packages/kernel-devel-4.18.0-80.11.2.el8_0.x86_64.rpm

$ rpm2cpio ./kernel-devel-4.18.0-80.11.2.el8_0.x86_64.rpm | cpio -id

$ sudo yum install elfutils-libelf-devel

$ make KVER=4.18.0-80.11.2.el8_0.x86_64 KDIR=~/src/usr/src/kernels/4.18.0-80.11.2.el8_0.x86_64/

Figure 4: Compiling LiME Against a Specific Kernel Version (1)

Figure 5: Compiling LiME Against a Specific Kernel Version (2)

Figure 6: Loading the LiME Module

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=/media/centos77.mem format=lime"

1717

© Internet Initiative Japan Inc.

6 contain the LiME module options. In this example, a lime

format dump file will be saved to the USB drive mounted at

/media under the filename /media/centos77.mem.

The memory dump starts when the LiME module is loaded,

but the command prompt does not return until the mem-

ory dump is completed. So don’t worry if you’re unable to

enter commands after loading the module; just wait for the

dump to complete. More recent servers, in particular, can be

expected to take a while because of their large memory ca-

pacity. Note that the LiME module remains loaded even after

the memory dump finishes, so unload it using the rmmod

command, as shown in Figure 7.

2.5 Dumping Memory via the Network
If you do not have physical access to the target host as

covered above (for example, if the target host is in a remote

location that makes physical access difficult), or if you don’t

have a large-capacity USB stick, you can combine LiME with

other tools to acquire a memory image via the network. Here,

we show how to combine it with Netcat, NFS, and SSH.

The examination host’s IP address is 192.168.232.131,

and target host’s is 192.168.232.132.

■ Netcat (1)

The LiME module has functionality that enables memory

dumps over the network, and we combine this functional-

ity with the Netcat command to acquire a memory image

via the network. Once the Netcat command is installed on

the examination host, the commands in Figures 8 and 9

will connect the examination host to the port on which the

LiME module is listening (4444/tcp) to acquire the memory

image data.

■ Netcat (2)

The above procedure will result in data equivalent to the

capacity of memory being received. If the target host is a

server, that data may take up several dozen GB or more, so

Figure 10: Command Executed on the Examination Host

Figure 9: Acquiring a Memory Image via the Network Using Netcat
(Examination Host)

Figure 8: Listening on 4444/tcp with LiME (Target Host)

Figure 7: Unloading the LiME Module

Figure 13: NFS Export Settings on the Examination Host (/etc/exports)

Figure 12: Setting the NFS Server (Examination Host)

Figure 11: Commands Executed on the Target Host

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=tcp:4444 format=lime"

$ nc 192.168.232.132 4444 > centos77.mem

$ nc -l 5555 > memorydump.lime.gz

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=tcp:4444 format=lime"

Switch to another login session to execute the following command

$ nc localhost 4444 | gzip -c | nc 192.168.232.131 5555

$ sudo yum install nfs-utils

$ sudo mkdir /mnt/nfsserv/

$ chown -R nfsnobody:nfsnobody /mnt/nfsserv/

$ sudo vi /etc/exports

$ sudo systemctl start nfs.service

$ sudo systemctl status nfs.service

/mnt/nfsserv/ 192.168.232.132(rw,all_squash)

$ lsmod | grep lime

$ sudo rmmod lime

18

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

we want to compress it as much as possible. If Netcat is

also installed on the target host, executing the commands

in Figures 10 and 11 will result in the memory image being

compressed using gzip when it is transferred to the exam-

ination host. As mentioned, the command prompt does not

return when the LiME module is loaded, so the command

following the nc command needs to be run from a separate

login session.

In this example, we first use Netcat on the examination host

to listen on 5555/tcp. Next, we use Netcat on the target

host to connect to 4444/tcp, where the LiME module is lis-

tening, acquire a memory image, compress it using gzip, and

then transfer it to the examination host via Netcat.

■ NFS

If the target host can mount an NFS volume, set up the

examination host on a network that the target host has ac-

cess to. Then export the NFS volume on the examination

host with read/write capability. By copying LiME to this NFS

volume and mounting it as an NFS from the target host, you

can acquire a memory image without creating any files on

the target host (Figures 12, 13, 14, and 15).

■ SSH

If you cannot use Netcat or NFS, you can use SSH instead.

By executing the commands in Figure 16, you can transfer a

memory image to the examination host via SSH. However,

this method can only be used in bash. As with the Netcat (2)

instructions, the exec command onward must be run from a

separate login session.

2.6 What is Crash?
The crash command is a tool for analyzing Linux mem-

ory images. The primary purpose of the tool is to perform

analysis, but a module can also be used to perform mem-

ory dumps. But as there is no RPM package of the crash

memory dump module, we have to compile it from source

Figure 16: Commands Executed on the Target Host

Figure 15: Mounting the NFS and Acquiring a Memory Image (Target Host)

Figure 14: Configuring the Examination Host’s Firewall
and Checking the NFS Export

$ sudo firewall-cmd --permanent --add-service=nfs

$ sudo firewall-cmd --reload

$ sudo exportfs -v

$ sudo insmod /media/lime-3.10.0-1062.el7.x86_64.ko "path=tcp:4444 format=lime"

Switch to another login session to execute the following command

$ exec 5<>/dev/tcp/127.0.0.1/4444; cat <&5 | ssh -c user@192.168.232.131 'cat > centos77.mem'

$ sudo mount -t nfs 192.168.232.131:/mnt/nfsserv/ /mnt/

$ sudo insmod /mnt/lime-3.10.0-1062.el7.x86_64.ko "path=/mnt/centos77.mem format=lime"

1919

© Internet Initiative Japan Inc.

*6 The Volatility Foundation - Open Source Memory Forensics (https://www.volatilityfoundation.org/).

*7 Lorenzo Martínez’ tweet (https://twitter.com/lawwait/status/1181469996821700609).

2.7 Analyzing the Memory Image
To analyze a Linux memory image using Volatility*5, you

need a profile corresponding to the Linux kernel version.

As noted at the beginning, the procedure for creating a

Volatility profile is described in IIR Vol. 32*1. Please refer

there if you are unsure.

While we were writing this article, Lorenzo Martínez

opened a Bitbucket repository that automatically gener-

ates and publishes LiME modules and Linux profiles for

Volatility*7. This repository is updated whenever new Linux

kernel packages are released. Note, though, that the OSs

that it automatically generates for are CentOS 5, 6, 7,

8 and Ubuntu 14.04 LTS, 16.04 LTS, 18.04 LTS. You

can find and download the appropriate LiME module and

(Figure 17). The crash command also requires a kernel with

debug symbols, so we install the kernel debugging package

(Figure 18). Next, we copy the three files shown in Figure

19 to the same directory on a USB stick. On the target

host, we execute crash as shown in Figure 20 to acquire a

memory image.

If the kernel version of the target and examination hosts

differ, then search for the appropriate version of the ker-

nel-debuginfo package as demonstrated in Figure 4 (yum

--showduplicates search). Download and extract the pack-

age as shown in FIgure 5 (curl, rpm2cpio, cpio commands),

and copy the vmlinux file. We also recommend using a crash

version that corresponds to your OS version (for example,

crash-7.2.3-18 is provided in CentOS 8.0).

$ sudo yum install crash crash-devel

$ yumdownloader --source crash

$ rpm -ivh crash-7.2.3-10.el7.src.rpm

$ cd rpmbuild/SPECS

$ rpmbuild -bp crash.spec

$ cd ../BUILD/crash-7.2.3

$ make extensions

・/usr/bin/crash

・rpmbuild/BUILD/crash-7.2.3/extensions/snap.so

・/usr/lib/debug/usr/lib/modules/3.10.0-1062.el7.x86_64/vmlinux

$ sudo yum install --enablerepo=base-debuginfo kernel-debuginfo-3.10.0-1062.el7.x86_64

Figure 18: Installing a Kernel with Debug Symbols

Figure 17: Installing the crash Source Package and Compiling the Module Figure 19: Files Required for a Memory Dump

20

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

Volatility profile by filtering the repository webpage by ker-

nel version.

Also, it does not support architectures other than x86_64,

so if you are using a Linux distribution or architecture other

than those covered by the autogenerated files, you will need

to prepare the files yourself. The same applies if you are

using a customized Linux kernel. If using crash, you will also

need your own customized kernel with debug symbols.

2.8 Tips for Acquiring Memory Images
In Linux kernel version 2.4 upward, the tmpfs file system is

available. Data on a tmpfs file system resides only in memory

and is lost if the host is shut down or restarted, so tmpfs is

usually only used for temporary directories and the like with

files one is not concerned about losing. It has been observed,

however, that attackers take advantage of these properties

by using tmpfs as an anti-disk forensics haven for files.

For this reason, Volatility provides the Linux-specific linux_

tmpfs command. This command is used to restore files held

in a tmpfs. Figure 21 illustrates tmpfs files mounted on the

/home/user/tmp directory being restored. The command re-

sults in the file called “tmpfs_example.txt” being restored,

and evidently it contains the string “hello!!”

If available memory is running low, however, the contents

of the tmpfs are swapped out, making it impossible to re-

store the data in the tmpfs via a memory dump (Figure 22).

A potential countermeasure in this case is to temporarily

$ python2 ./vol.py --profile=LinuxCentOS77x64 -f ~/tmpfs_swapoff.mem linux_tmpfs -L

Volatility Foundation Volatility Framework 2.6.1

1 -> /sys/fs/cgroup

2 -> /run

3 -> /home/user/tmp

4 -> /dev/shm

$ python2 ./vol.py --profile=LinuxCentOS77x64 -f ~/tmpfs_swapoff.mem linux_tmpfs -S 3 -D ~/vol_output/

$ hexdump -C ~/vol_output/tmpfs_example.txt

00000000 68 65 6c 6c 6f 21 21 0a |hello!!.|

00000008

$ hexdump -C ~/vol_output/swapout/tmpfs_example.txt

00000000 00 00 00 00 00 00 00 00 |........|

00000008

Move to the directory where the files were copied and then execute these

commands.

$ sudo ./crash ./vmlinux

(Then from within the crash command prompt)

extend ./snap.so

snap centos77.mem

Figure 20: Acquiring a Memory Image Figure 22: Example of a Failure to Restore tmpfs Data due to a Swap-Out

Figure 21: Restoring and Examining the Contents of Files Stored in a tmpfs

2121

© Internet Initiative Japan Inc.

*8 Volatility Labs: Announcing the Volatility 3 Public Beta! (https://volatility-labs.blogspot.com/2019/10/announcing-volatility-3-public-beta.html).

*9 dwarf2json (https://github.com/volatilityfoundation/dwarf2json).

disable the swap. This means forcing data that has been

swapped out to be swapped in. Whether or not this can be

done, however, depends on memory usage on the target

host. If data has been swapped out because of a temporary

increase in memory usage, you may be able to subsequently

disable the swap if memory has since been freed up. This

means a situation like that illustrated in Figure 23, for ex-

ample, where the value of Swap used is lower than free

Mem. Analysis of the memory image acquired after disabling

the swap confirms that the tmpfs data can be restored, as

shown in Figure 24.

This method, however, does overwrite data in unused areas

of memory. Because unused memory areas may still contain

useful data, a better way to perform Linux memory foren-

sics is to dump memory once before disabling the swap and

once again after.

2.9 Volatility 3
Version 2 of Volatility has been in use for a long time, but

during the writing of this article, a public beta version of

Volatility 3 was released*8. Of course we did not check

it with all types of memory images, but in our setup, we

were able to analyze Windows RAW memory images and

CentOS memory images acquired using LiME. A big change

is that the option to specify a profile, which was required in

Volatility 2, is no longer present. Instead, Volatility 3 infers

OS type and version from the memory image being analyzed

and refers to the corresponding symbol table. For exam-

ple, when a Windows memory image is read in, Volatility

3 automatically downloads the PDB file from Microsoft and

analyzes it to construct a symbol table that it can reference.

However, you still need to prepare symbol tables for macOS

and Linux in advance, as in Volatility 2. You can use the

symbol tables provided by the Volatility developers, but the

symbol tables for Linux lack information relative to those

for Windows and macOS, so in most cases, you’ll need to

provide the table yourself.

Symbol tables are created using a tool called dwarf2json*9.

As dwarf2json is written in Go, we first install the golang

package and then build dwarf2json. We also install the ker-

nel-debuginfo package because we need a Linux kernel with

symbols. Executing dwarf2json with a Linux kernel with

$ sudo yum install epel-release

$ sudo yum install golang

$ git clone https://github.com/volatilityfoundation/dwarf2json.git

$ cd dwarf2json

$ go build

$ sudo yum install --enablerepo=base-debuginfo kernel-debuginfo-3.10.0-1062.1.2.el7.x86_64

$./dwarf2json linux --elf /usr/lib/debug/usr/lib/modules/3.10.0-1062.1.2.el7.x86_64/vmlinux > centos77-3.10.0-1062.1.2.el7.x86_64.json

$ xz -z centos77-3.10.0-1062.1.2.el7.x86_64.json

$ wget https://downloads.volatilityfoundation.org/volatility3/symbols/linux.zip

$ zip ./linux.zip ./centos77-3.10.0-1062.1.2.el7.x86_64.json.xz

$ free

 total used free shared buff/cache available

Mem: 1863248 75920 307192 768 1480136 1591860

Swap: 2097148 56776 2040372

$ sudo swapoff -a

$ free

 total used free shared buff/cache available

Mem: 1863248 118804 247652 9800 1496792 1539936

Swap: 0 0 0

(After dumping memory, reenable the swap)

$ sudo swapon -a

$ hexdump -C ~/vol_output/swapoff/tmpfs_example.txt

00000000 68 65 6c 6c 6f 21 21 0a |hello!!.|

00000008

Figure 25: Building dwarf2json and Generating a Symbol Table

Figure 23: Checking Memory Usage, and Disabling and Enabling the Swap
Figure 24: tmpfs Data Restored from a Memory Image

After Disabling the Swap

22

Vol. 45Feb.2020

2. Focused Research

© Internet Initiative Japan Inc.

Minoru Kobayashi

Forensic Investigator, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Kobayashi is a member of IIJ-SECT, mainly dealing with digital forensics. He works to improve incident response capabilities and in-
house technical capabilities.
He gives lectures and training sessions at security events both in Japan and abroad, including Black Hat, FIRST TC, JSAC, and Security
Camp events.

$ cd ..

$ sudo yum install python3

$ git clone https://github.com/volatilityfoundation/volatility3.git

$ pip3 install --user pefile yara-python capstone

$ cp ./dwarf2json/linux.zip ./volatility3/volatility/symbols/

$ cd volatility3

$ python3 vol.py -f ~/centos77.mem linux.pstree.PsTree

Volatility 3 Framework 1.0.0-beta.1

Progress: 23.13 Scanning LimeLayer using RegExScanner

PID PPID COMM

1 0 systemd

* 833 1 login

** 1695 833 bash

* 841 1 firewalld

* 843 1 NetworkManager

** 992 843 dhclient

* 558 1 systemd-journal

* 593 1 systemd-udevd

* 818 1 dbus-daemon

* 1171 1 sshd

** 1720 1171 sshd

*** 1724 1720 sshd

**** 1725 1724 bash

***** 1751 1725 sudo

****** 1753 1751 insmod

* 1172 1 tuned

* 821 1 systemd-logind

* 822 1 irqbalance

* 823 1 polkitd

* 1174 1 rsyslogd

* 1397 1 master

** 1402 1397 pickup

** 1405 1397 qmgr

(Subsequent output omitted)

symbols specified will generate a symbol table, so we add

this to the file (linux.zip) that contains the symbol table dis-

tributed by the developers. See Figure 25 for the specific

commands. Copy the generated symbol table to the speci-

fied Volatility 3 subdirectory (Figure 26).

Volatility 3 is executed using this command line format: “py-

thon3 vol.py -f <memory image file> <plugin>”. Figure 27

shows the results of analyzing a CentOS 7.7 memory image

using the pstree plugin. The format has changed slightly from

that of Volatility 2, with the * character now used to denote

process nesting. The method for specifying the plugin to be

executed has also changed. For the pstree plugin, you specify

“linux_pstree” in Volatility 2, but in Volatility 3, you specify

“linux.pstree.PsTree”. A list of available plugins can be found

by running “python3 vol.py -h”.

While we did get it to work properly, we also identified

some bugs. As noted above, OS type and version are in-

ferred from the contents of the memory image specified on

the command line, but it can fail to recognize the correct

Linux kernel version with some memory images, causing the

analysis to fail. And with Windows memory images, some-

times analysis of the downloaded PDB fails, preventing you

from advancing to the memory image analysis stage of the

process.

The Volatility development team has announced an official

Volatility 3 version will be released in August 2020. Support

for Volatility 2 will continue for one year after that through

August 2021, but with Volatility 3 set to become main-

stream ahead, it’s probably a good idea to get accustomed

to the new usage and configuration methods before the of-

ficial release hits.

Figure 26: Installing Volatility 3 and Copying the Symbol Tables Figure 27: Running the pstree Plugin on a Linux Memory Image

2323

	2.	Focused Research
	2.1	Linux Memory Dump Toolsn
	2.2	What is LiME?
	2.3	Compiling LiME
	2.4	Dumping Memory to an External Drive
	2.5	Dumping Memory via the Network
	2.6	What is Crash?
	2.7	Analyzing the Memory Image
	2.8	Tips for Acquiring Memory Images
	2.9	Volatility 3

