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Using Deep Learning on URL Strings 
to Detect Rogue Websites
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While the Internet is now used to provide a range of useful 

services, it is also increasingly being used maliciously. As it 

is difficult to keep track of everything on huge, complicated 

systems manually, a range of automation strategies are em-

ployed. Security applications of deep learning have attracted 

attention in recent years. If deep learning can be used to 

assist humans in fields where experience and knowledge 

are crucial, this should enable a greater number of people to 

engage in higher-level tasks and, as a result, make it pos-

sible to provide safe services. In this issue, we present our 

attempt to use deep learning to prevent cyberattacks.

2.1 Advent of the Web and the Battle
 against Malicious Sites
Some 30 years have passed since Tim Berners-Lee, then 

a fellow at CERN (the European Organization for Nuclear 

Research), released CERN httpd, the first ever World Wide 

Web (WWW) server software. It constituted a means of 

using hypertext on the Internet, and combined with HTTP 

(Hypertext Transfer Protocol) and URLs (Uniform Resource 

Locators), it provided the technology to connect the world’s 

information resources in a blink of an eye. It is no coinci-

dence that the 1980s and 90s were also a time that saw 

the explosive spread of TCP/IP-equipped BSD UNIX, particu-

larly among educational institutions, laying the groundwork 

for connecting the world’s computers to one another. The 

release of Mosaic, a GUI-based Web browser, by the United 

States’ National Center for Supercomputing Applications 

(NCSA) also made it possible for non-computer-experts to 

easily access the world’s information. Web technologies 

continue to evolve even now, with new services popping up 

all over the place daily.

Something common to all technologies is that those tech-

nologies with the potential to make the world a better place 

can also make it worse. As all sorts of services become 

available online, so too emerge attempts to deceive and 

defraud via the Web. A common example involves setting 

up a fake version of a well-known service or banking web-

site and sending out fake emails or other communications 

to steer users into the site, which is then used to steal their 

personal information, passwords, and the like. Fraud and de-

ception existed before the advent of the Web, of course, but 

just as with email spam, digitization has lowered the cost 

and made it possible to target a larger number of people. 

The information age has brought benefits for both legitimate 

society and its underbelly alike.

Protecting users from accessing malicious sites has been 

a key issue for network services operators in recent years. 

On their end, ISPs commonly provide services that block 

rogue sites for their users. If you are responsible for your 

organization’s information systems, perhaps your activities 

involve having some sort of security software installed for 

your organization’s users. The technology commonly used 

to defend against rogue sites at present basically uses 

blacklists. But, as you can probably imagine, it is not really 

feasible to cover the entirety of the vast space that is the 

Web using blacklists alone. Researchers have been looking 

for more efficient ways of recognizing malicious sites. One 

attempt, for example, has involved using the domain names 

of known rogue sites to mechanically derive similar strings, 

thereby producing a large number of new potential malicious 

domain names from a short blacklist*1. Another has involved 

going beyond the idea of mere lists to look at features such 

as when the domain was registered and its Google search 

ranking, with domain names that have only recently been 

registered, have a low search ranking, and so on being 

treated as less trustworthy*2. Other techniques that have 

been proposed include actually retrieving and analyzing the 

content of web pages via a transparent proxy to detect 

whether a site is malicious or not*3. And as deep learning 

has advanced in recent years, it has also increasingly been 

employed in security applications.
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2.2 Meaning Hidden in URL Strings
The battle against rogue sites is a never-ending one. As 

soon as a technique for defending against such sites is de-

vised, a mechanism for avoiding it appears. Even so, it is still 

important to consider new defense techniques if we are to 

make the Internet safer.

The proxy approach of actually retrieving page content to 

determine whether a site is rogue has the advantage in 

terms of detection rates. The act of actually accessing a 

site, however, can be dangerous in some cases. Given pro-

cessing load, privacy, and other issues, methods that do not 

involve retrieving any actual content have also been pro-

posed. The simplest of these is to look solely at the URL 

itself. The issue here is whether the strings that make up 

the URL contain any information that can indicate whether 

a site is rogue or not.

No one has a precise answer to this question. But a look at 

past research shows that some people have thought there 

may be meaning to be found. One well-known idea, for 

example, is to look at whether the domain name is a pro-

nounceable string. Domain names often have something to 

do with actual goods or services, so URL strings are often 

based on natural language words and names and thus in-

evitably turn out to be strings that humans can pronounce. 

Some malware uses mechanically generated domain names 

(from a domain generation algorithm, or DGA), and in many 

cases these names consist of strings that cannot be pro-

nounced. The idea is that if a distinction can be made here, 

it may be possible to distinguish between ordinary and sus-

picious Internet access.

Another idea is that an unusually large number of sub-

domains (host names with lots of dots in them) and an 

unusually deep path (URLs with lots of slashes in them) 

often indicate malicious intent. Under this approach, it is 

common practice to consider various criteria based on em-

pirical rules, combining those criteria to determine whether 

something is malicious or not.

And at the forefront of techniques in this area, researchers 

are looking into the use of deep learning to assess URLs.

2.3 Resurgence of Deep Learning
Deep learning began to rise in the popular mindset around 

five or six years ago. Neural networks themselves, which are 

used in deep learning, have actually been around for long 

enough to be labeled as classical. However, the approach of 

deep learning, which uses multilayer neural networks, was 

long thought of as being hamstrung by practical impediments 

given the amount of calculation involved and the technical 

difficulties in getting models to learn properly. Flash forward 

to the 2010s, though, and the development of techniques 

that produced remarkable results in the area of image rec-

ognition flung the field into the spotlight. Opinion varies, but 

the most common account seems to be that the deep learn-

ing-based image recognition system*4 demonstrated by Alex 

Krizhevsky and colleagues at the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 2012 marked the start 

of the modern wave of deep learning that has propagated 

through to today. The model achieved a sharp reduction of 10 

percentage points in the error rate from the previous mark of 

around 25%, demonstrating that deep learning can be applied 

to real-world scenarios. Use of deep learning subsequently 

became widespread, mainly in image and voice recognition, 

and it has also been applied to natural language translation, 

document classification, and even the strategy game Go.

In networking as well, researchers continue to put forward 

deep learning-based techniques, mainly in the area of secu-

rity. In this article, we describe our proposal*5 for detecting 

malicious sites based on URL strings, but we note that this 

is naturally not the first proposed approach of its type in the 
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world and that we expect many researchers and engineers to 

put forward even better strategies going forward. Creating 

something that will work indefinitely is not easy in network 

environments, particularly in distributed autonomous environ-

ments such as the Internet. Systems and data change with 

the times, and it is impossible to know all of the information 

therein because we can only ever see a portion of the world 

at once, and the information we can see becomes outdated 

almost as quickly as you can blink.

Deep learning is not an all-powerful approach. We do not yet 

know whether it will produce an intelligence that exceeds 

human capabilities, an idea that is often bandied about, but 

we do know what it is currently capable of.

Deep learning is a subset of machine learning in which a set of 

operations are performed on a given input vector to produce 

a separate output vector. It is used in classification problems 

and identification problems. An example of an image recog-

nition application is a system that accepts an image of a cat 

(converted into a vector representation) and gives either a 0 

or a 1 as output to indicate whether or not the image is a cat. 

Deep learning requires a large amount of data to determine 

what set of operations to perform. In the cat example, this 

would be a large quantity of cat images as well as images 

of objects other than cats. This is called the training data. 

When the data are labeled so that the answers are known, 

this is called supervised learning, and when this is not the 

case, it is called unsupervised learning (semi-supervised tech-

niques that fall between these two also exist). Deep learning 

has produced great results with these sorts of classification 

problems.

2.4 Vectorizin URLs
Now let’s move on to our URL classification problem. Our 

objective is to determine whether a given URL points to an 

ordinary, unproblematic site or to a rogue site. To use deep 

learning methods, we first need to convert the URLs into a 

vector representation that a deep learning model can take 

as input.

Before the rise of deep learning, the task of defining these 

vectors (feature engineering) was crucial to machine learn-

ing. This is because how you define what information is 

necessary and sufficient for differentiating your data ahead 

of time greatly influences performance. As mentioned pre-

viously, in URL classification, a variety of factors have 

been studied and validated as features that can be used 

to distinguish URLs, including whether the strings are pro-

nounceable, the number of dots and slashes, the ratios of 

alphabet, symbol, and number characters, the position of 

characters, the frequency of n-gram strings, and so on. 

Haphazardly increasing the number of features can affect 

how long it takes to crunch the numbers, so with conven-

tional machine learning methods of the past, experts with a 

deep knowledge of the dataset in question had to carefully 

select features likely to be useful through painstaking anal-

ysis of existing data.

It is said that deep learning, in contrast, can discover fea-

tures for itself when trained using a large amount of data. In 

reality, it is not that simple, as careful preprocessing of the 

data often influences the final results, but it is also true that 

quantity of data can mitigate the effort needed for feature 

engineering to an extent.

To classify URLs in our system, we will not use existing fea-

tures. Instead, we define a simple transformation to convert 

URL strings into fixed-length vectors. Past wisdom certainly 

can be used to classify URLs, but it is not necessarily pos-

sible to define features that will always be useful when 

working with other datasets in the future. There is also the 

tentative prospect of perhaps being able to use the same 

strategy on other datasets if we discover that it is possible 

to distinguish URLs using simple preprocessing and a large 

quantity of training data.

The vectorization procedure we adopted is as follows.

1.Split the URLs into individual characters

2.Convert the characters to hexadecimal ASCII codes

3.Extract byte values beginning at the start of the host part 

and the path part separately, shifting 4 bits at a time

4.Count how many times each value (from 0x00 to 0xFF) 

appears in the host part and path part, respectively, to 

form 256-dimensional vectors

5.Combine the 256-dimensional vectors created from 

the host part and the path part to form a 512-dimen-

sional vector

6.Normalize the vector
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Figure 1 shows steps 1 through 3. In step 4, we then count 

the values. The counts (in parentheses) for the sequence 

shown in Figure 1 are as follows.

Denoting the host vector as V and the ith element as vi (where i is 

the extracted value), v0x16 = 1, v0x2E= 3, v0x42 = 1, … ,v0xE6 = 3. 

Positions corresponding to unextracted values will contain 

a 0. Any original URL of any length can be converted into a 

512-dimensional vector in this manner. But the longer the 

URL, the larger the size of the vector, so we normalize the 

vectors in step 6. We define the resulting 512-dimensional 

vector to be the “URL feature vector”.

2.5 Designing the Neural Network
We are now ready to convert the URLs to fixed-length vec-

tors. Next we have to decide how to train on that URL feature 

vector. In our attempt here, we used a simple 3-layer neural 

network. Although this is a rather shallow network for deep 

learning, it should be sufficient to determine whether this 

sort of method is effective or not.

Figure 2 shows the topology of the neural network we used. 

Some readers may have seen this topology somewhere be-

fore. This three-layer, fully connected topology appears as 

a sample in the Chainer open source deep learning library 

(https://chainer.org/) developed by Preferred Networks, and 

is used to recognize handwritten numerals from the MNIST 

dataset (http://yann.lecun .com/exdb/mnist/). Our work is 

based on this, with the following two changes.

w w . i . d j / n e . t lw i j a . p i d x h m

www.iij.ad.jp/index.html

77,77,77,77,77,72,2E,
E6,69,96,69,96,6A,A2,
2E,E6,61,16,64,42,2E,
E6,6A,A7,70

3F,F6,69,96,6E,E6,64,
46,65,57,78,82,2E,E6,
68,87,74,46,6D,D6,6C

7777772E69696A2E61642E6A703F696E6465782E68746D6C

Extract 8-bits values by shifting 4 bits in the HEX values

Convert the URL into HEX values

Split characters

Count the number of unique values for the host part and the URL
path part respectively (Bag of features)

URL string

Host vector (256-length) Path vector (256-length)

512-length

256-length

256-length

(fully connected layer)

0.75 dropout

0.75 dropout(fully connected layer)

(fully connected layer)

x
1

x
2

x
0

w
1

w
2

w
0

x
254

x
255

x
253

w
254

w
255

w
253

v
507

v
506

v
509

w
255

v
508

v
511

v
510

v
1

v
0

v
3

w
255

v
2

v
5

v
4

y
0

y
1

・・・・・

・・・・・

・・・・・

Figure 2: Neural Network Topology

Figure 1: URL Vectorization

0x16 (1), 0x2E (3), 0x42 (1), 0x61 (1), 0x64 (1), 0x69 (2), 0x6A (2),0x70 (1), 
0x72 (1), 0x77 (5), 0x96 (2), 0xA2 (1), 0xA7 (1), 0xE6 (3)
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2.Completeness: It is not possible to show whether the 

data used to train the model is a true representation 

of the general picture. If the model is trained on bi-

ased data, it will be unable to cope with different 

patterns when they appear. In the case of handwrit-

ten digit recognition, the problem space is somewhat 

limited since it only involves the digits 0 through 9, 

whereas URL strings on the Internet represent a vir-

tually unlimited space, so the scope of applicability 

will naturally differ.

Under the provision that such problems exist, it is important 

to prepare data that is as accurate and complete as possible. 

The data we use comprises active phishing sites listed on 

PhishTank (https://www.phishtank.com/). PhishTank by no 

means provides an exhaustive list of all the rogue sites out 

there, so although completeness is not guaranteed, the data 

offer a degree of credibility since the process of determining 

whether a site is a phish or not involves human verification 

via a voting system. Compiling data on ordinary (non-rogue) 

sites is more difficult. For verification, we take sites ap-

pearing in a particular research institution’s access logs and 

exclude those listed on PhishTank, defining such sites to be 

non-rogue sites. To enhance completeness, however, we 

would need to perform additional tests based on different 

types of access logs.

1.Number of input/output dimensions: With the MNIST 

sample, input images are 28x28 pixels, yielding 784 

input dimensions. And the output is 10-dimensional be-

cause the output values are the digits 0 through 9. Our 

input is the 512-dimensional URL feature vector, and 

our output is 2-dimensional, being the value 0 or 1, 

indicating whether a site is rogue or not.

2.Dropout rate: The MNIST sample does not use dropout, 

a method for preventing overfitting, but we observed 

serious overfitting with our data and thus set a fairly 

high dropout rate.

We used Chainer to verify our proposed approach. The neu-

ral network model we built in Chainer is shown in Table 1.

2.6 Data Source Selectionk
With our data structures and neural network model in place, 

we can now use actual data to verify our approach. Two 

major issues present themselves in dynamic environments 

like the Internet.

1.Data accuracy: With datasets like MNIST, the data 

are already fully validated and properly labeled (in the 

case of MNIST, this means the handwritten digits 

and the values they represent). Accurately labelling 

data observed/collected via the Internet, meanwhile, 

can be problematic. If the model is trained on incor-

rect information, it will naturally end up predicting 

incorrect answers.

from chainer import Chain
import chainer.functions as F
import chainer.links as L
class Model(Chain):
 def __init__(self):
 super(Model, self).__init__()  
 with self.init_scope():
 self.l1 = L.Linear(None, 256)
 self.l2 = L.Linear(None, 256)
 self.l3 = L.Linear(None, 2)
 def __call__(self, x):
 h1 = F.dropout(F.relu(self.l1(x)),
 ratio=0.75)
 h2 = F.dropout(F.relu(self.l2(h1)),
 ratio=0.75)
 y = self.l3(h2)
 return y

Table 1: Neural Network Model Built in Chainer
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2.7 Applicability of Deep Learning
We randomly extract around 26,000 URLs each from the 

two types of data sources prepared per the previous sec-

tion. Of this, 80% is used for training. When we used the 

remaining 20% to assess accuracy, we found that we were 

able to correctly distinguish between rogue and non-rogue 

URLs for 94% of the data. Opinion may vary on whether 

this is a good result or not. Some classification methods put 

forward in the past have achieved better outcomes than this 

figure. In some cases, those methods also used information 

other than just the strings (e.g., Whois information, Google 

search ranking), so simple comparisons with our approach 

are not possible. Another attempt employed deep learning 

on URL strings alone*6 in a manner similar to our approach, 

yielding better classification accuracy than we achieved. 

Yet when we independently implemented the neural net-

work proposed in that study and tested it on our dataset, we 

were unable to replicate the high accuracy reported in that 

paper. The takeaway here is that even with the same neural 

network model, accuracy can vary significantly depending 

on the dataset used for training.

Since it is impossible to obtain all the world’s data, trained 

models will inevitably carry some bias. The term big data 

seems to have fallen by the wayside a bit lately, but we 

think it is likely that organizations with large stores of 

wide-ranging data will continue to occupy an advantageous 

position in the deep-learning world as well; indeed, that ad-

vantage may even widen.

2.8 Conclusion
We have described our attempt to apply deep learning to the 

task of identifying rogue URLs. Despite only using a simple 

neural network to test our approach, we were able to clas-

sify URLs with 94% accuracy. This exercise also reaffirmed 

the difficulties in collecting data and the advantages that 

having data imparts.

We can expect deep learning to increasingly be applied to 

network data ahead. With computing power increasing, it 

has become relatively easy to use deep learning. We hope 

to incorporate new technologies into our approach as we 

work toward making the Internet even safer going forward.
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