
© Internet Initiative Japan Inc.

Kubernetes and the Cloud

3. Focused Research (2)

*1 Kubernetes is a container orchestrator that controls container engines, such as Docker, and manages container clusters composed of multiple nodes. It was created 

by Google and is currently an open source software project hosted by the CNCF (Cloud Native Computing Foundation). It is said to have originally been based on 

an internal Google system called Borg. Kubernetes is a runtime environment for containerized applications and makes possible infrastructure-independent, portable 

application packaging, provisioning, and operation. Kubernetes is sometimes referred to as an OS for the cloud era and is looked to as a potential unified operations 

interface for multicloud and hybrid cloud environments.

To use Kubernetes, you need network drivers, storage drivers, traffic managers, and so on to match your infrastructure, but Kubernetes basically does not in-

clude implementations of these elements. And to set up a Kubernetes environment properly, portal and monitoring tools for application management and account 

management are also essential, but these sorts of tools also need to be found elsewhere. This is the reason for the emergence of Kubernetes distributions, which 

package Kubernetes together with an environment for it to run in as well as an installer and other tools. IKE (IIJ Container Engine for Kubernetes), which I discuss 

below, is one such Kubernetes distribution.

3.1 Introduction
If you have been keeping on eye on the cloud computing 

scene, you may have noticed that news relating to con-

tainerization technology seems to appear daily. You can 

be certain that news containing keywords like Docker, 

Kubernetes*1, and CNCF falls into this category. And as 

the ecosystem continues to expand, with various products 

based on Docker and Kubernetes being created, it is not 

uncommon for stories to actually be about container-related 

technology even if they don’t appear to be at first glance.

Although it is undeniable, to an extent, that industry play-

ers, particularly the mega cloud vendors, will be sorting out 

the cloud industry rules for a while to come, a look at the 

rise of containerization technology compels me to believe 

that the industry rules are likely to be rewritten by upcom-

ing trends earlier than we had thought. Perhaps events set 

to have an even greater impact on the IT industry than the 

emergence of IaaS are afoot.

At IIJ, we have also started to make wide use of this tech-

nology to, for instance, enable rapid business deployments 

and the efficient, high-quality operation of large-scale sys-

tems, develop highly portable software, and optimize costs 

via the efficient use of infrastructure. I will discuss the IKE 

(IIJ Container Engine for Kubernetes) system that we use 

internally further below, but first I would like to explain why 

containerization technology has been thrust so rapidly into 

the spotlight and what impact this technology is likely to 

have on cloud computing.

3.2 Docker and Kubernetes
Products and services that encompass containerization 

technology are springing up like mushrooms, but only two 

products lie at the center of all this: Docker and Kubernetes. 

Catching up on developments surrounding these two prod-

ucts is a good way to familiarize yourself with the key trends 

in the rapidly advancing containerization space.

The relationship between the two is slightly complicated, 

but in the simplest terms, Docker is a container engine 

that starts programs and wraps them in containers, while 

Kubernetes is a container orchestrator that bundles together 

and controls multiple container engines. In general terms, an 

orchestrator is a controller that coordinates between mul-

tiple interrelated systems and integrates them into a single 

overall system. A container orchestrator like Kubernetes 

bundles together the multiple host nodes started by the 

container engine (e.g., Docker) and controls them efficiently 

and autonomously as a single large resource pool. Although 

Docker, as a product, competes with Kubernetes in some 

respects, it is less confusing to to think of the relationship 

between them as being one of a container orchestrator and 

a container engine (Figure 1).

That said, these two products are not always paired with 

each other. Docker is already widely recognized and used 

for the convenience it offers as a standalone system, but 

Kubernetes does not seem to be used quite that extensively 

in production environments. This is because Kubernetes is 

a platform designed to control container clusters of a fairly 

16



3. Focused Research (2)

Vol. 40Nov.2018

© Internet Initiative Japan Inc.

Figure 1: Container Engines and the Container Orchestrator

decent size, so there are certain hurdles to overcome even 

if you just want to try it out, whereas Docker can also serve 

as a convenience utility in your local computing environment 

and is therefore a simple and easy choice even for minor use 

cases. A lot of engineers are probably making convenient 

use of Docker as a tool for setting up test environments, and 

as a means for distributing software. Docker is already on its 

way to becoming an essential part of the engineer’s toolkit.

Yet, of the two, it seems to be Kubernetes that is causing 

the bigger stir in the IT industry at present. This is because 

through the use of Kubernetes, containerization technology, 

rather than merely providing convenient utilities, is expected 

to significantly change the face of server-side systems.

Why is Kubernetes, which is by no means yet mature, gar-

nering so much attention? Probably because Kubernetes 

originally came from Borg, which has supported Google’s 

systems for over 10 years. Google’s internal systems are 

almost never explained in any detail, but by revealing some 

of the ways in which it is used, the book Site Reliability 

Engineering (the SRE book, as it is commonly known) of-

fered a glimpse into the surprising realities of Borg. No doubt 

this is what prompted more than a few people to take an 

interest in containerization technology. The revelation that 

Google’s systems do not contain virtual machines and that 

all processes are essentially run as containers had a major 

impact on engineers, particularly those working in the cloud 

business. Kubernetes is sometimes referred to as the OSS 

version of Borg, but it is unclear how much the two actually 

have in common. As a relative newcomer, Kubernetes may 

appear to have a limited track record, but it is quite conceiv-

able that its design incorporates best practices that have 

have been in use, and grown mature, at Google over a long 

period of time.

3.3 Best Practices for Harnessing IaaS
So then, how is Kubernetes set to change the face of 

server-side systems? It will facilitate highly portable, infra-

structure-independent deployments, goes the narrative. It 

will offer large-scale cluster management capabilities and 

make dynamic use of computing resources to provide ex-

cellent scalability. The potential of Kubernetes is described 

in all sorts of ways, but they tend to be vague and some-

what nebulous. That is in some sense inevitable—the role of 

Kubernetes is akin to that of a computer OS. Try explaining 

what an OS does to someone with no idea what an OS is 

and you’re likely to either find yourself telling a rambling, 

fragmented tale or delving into extremely technical detail.

Kubernetes is actually often referred to metaphorically as 

an OS for the cloud era. Drivers absorb any differences in 

infrastructure, the configuration of networks and storage is 

virtualized, and a unified interface is provided to any sys-

tems deployed on Kubernetes. Kubernetes makes it possible 

to design, build, and operate unified systems without relying 

on IaaS-specific interfaces. That said, Kubernetes is not an 

OS and does not provide an applications interface. The ap-

plications that run on Kubernetes are simply ordinary Linux 

and Windows applications.

Container

Container

Container

Container Engine
(Docker)

Server

Container

Container

Container

Container Engine
(Docker)

Server

Container

Container

Container

Container Engine
(Docker)

Server

Container Orchestrator
(Kubernetes)

17



© Internet Initiative Japan Inc.

Enter Kubernetes. A characteristic of IaaS systems is that 

they secure only the necessary resources as and when 

needed, and users only incur costs for the resources used. 

This dovetails well with Kubernetes, which makes it easy 

to dynamically manage and thereby efficiently use re-

sources and to take advantage of scalability. Not only does 

Kubernetes combine multiple nodes to ensure availability, it 

also makes it possible to automatically recover, without the 

need for human intervention, from all but systemwide faults 

by having the task of restoring faulty nodes delegated to 

Kubernetes (Figure 2).

An oft-heard explanation is that containers do away with 

the thick management layer conventionally constituted by 

hypervisors and virtual machines and thus allow for a thin, 

lightweight management layer with containerized processes 

running directly on a single OS. But the effect of contain-

erization technology would be very limited if that were all 

there was too it. Containerization is indeed more efficient 

than virtual machines in many cases, but that is simply a 

matter of means. The real effects are only realized once mul-

tiple servers are bundled into a single large resource pool, 

with operations automated by delegating management of 

configuration information to Kubernetes. In fact, a lot of 

containers right now probably run on an IaaS system imple-

mented as a virtual machine. Kubernetes can be thought of 

as a package imbued with best practices for making better 

use of IaaS technology.

While they are comparable in some respects, the major 

difference between an OS and Kubernetes is that an OS 

controls a single computer housed within a physical box, 

whereas Kubernetes manages multiple networked comput-

ers as one large resource pool. Processes managed by an 

OS cannot leave the physical box, but processes running 

on a Kubernetes cluster (i.e., containers) can be on any of 

the nodes that make up the cluster. So when resources are 

depleted, all the system has to do is increase the number of 

nodes and reassign containers (this happens automatically), 

and if a container stops running because of a fault with a 

node, the container can be restored simply by restarting it 

on a different node (this also happens automatically).

Cloud services, in many cases, are regarded as having excel-

lent stability, free from outages. But in reality, cloud services 

are many and varied, and since redundancy is not built into 

IaaS resources, in particular, such services can stop when 

faults occur, and they also experience planned outages for 

maintenance purposes. The spread of IaaS has made it possi-

ble to procure and build system resources and to recover from 

hardware faults in impressively short amounts of time, but for 

the most part, not that much has changed in the way systems 

are operated. Whether virtualized or not, if you’re still deal-

ing with servers, storage, and networks, very little changes in 

terms of operations. IaaS is not difficult to use, but the reality 

is that considerable effort is required to take advantage of the 

utility computing benefits that IaaS can offer.

Kubernetes
node

Kubernetes
node

Container

Container

Container

Container

Kubernetes
node

Container Container Container

Redundancy

Automatically
restored

Kubernetes

Autoscaling

Figure 2: Kubernetes using IaaS

18



3. Focused Research (2)

Vol. 40Nov.2018

© Internet Initiative Japan Inc.

3.4 Realizing Hybrid Clouds with Kubernetes
While it is true that Kubernetes is a platform for better 

harnessing the advantages of IaaS, it’s not the case that 

Kubernetes can only be used on IaaS. In fact, looking ahead, 

Kubernetes probably deserves more attention with respect 

to workloads for which an on-premise environment is key. 

We have been listening to our customers, and looking at 

cloud-related reports, for almost 10 years now. With the 

spread of cloud computing, although one can reason that a 

100% on-prem setup is unrealistic, the response from the 

vast majority of customers has been that a 100% cloud 

setup would also be difficult to pull off. The fact that this 

is the majority opinion at a time when many engineers have 

become highly proficient with IaaS may offer some indica-

tion of what lies ahead.

What this means is that we need to think seriously about 

using hybrid clouds, which make use of both IaaS and on-

prem environments as necessary. But, needless to say, this 

is no mean feat. Since IaaS is a closed system, it cannot 

be used in on-prem environments. Even if it were possible, 

however, operating a complex IaaS system in an on-prem 

environment could end up with you scratching your head 

and wondering what the whole point of using IaaS was 

in the first place. There certainly are some workloads for 

which an IaaS-equivalent setup in a private environment 

may be justified, but there are many tradeoffs to consider.

However, wrapping both an IaaS and an on-prem environ-

ment with Kubernetes may be a realistic solution. Broadly, 

there are two challenges on the road to a hybrid cloud. These 

are the integrated management of IaaS and on-prem systems, 

and application and data portability (Figure 3).

You certainly want to keep the following within the on-prem 

environment: workloads and data that cannot be allocated 

to an IaaS system for compliance reasons, and workloads 

that use a fixed set of large-scale resources over an ex-

tended period with no increases or decreases in the amount 

of resources. And you may want to allocate all other work-

flows to an IaaS system. If it were clear, to an extent, which 

is the most appropriate from the get go, there would not 

be much to worry about, but it is not uncommon for the 

answer to the question of which is most appropriate to 

change over time, with, say, IaaS being preferred during a 

business’s startup phase and on-prem being a better choice 

once the business has stabilized. If Kubernetes can solve the 

two previously mentioned challenges effectively, this mar-

ket has the potential for sudden expansion.

At present, however, neither hybrid clouds that use 

Kubernetes nor on-prem environments that use Kubernetes 

can really be described as mature when compared with com-

parable IaaS systems. IaaS allows for software-based control 

of all resources via APIs, whereas on-prem environments 

Application programing, operation, and fault-response
Host node management
Host OS management

Infrastructure-independent operation Infrastructure-specific operation

Kubernetes API

IaaS API

Console, SSHOn-premises
 (bare-metal server)

IaaS
（ex. IIJ GIO）

Kubernetes

Figure 3: Kubernetes Enabling a Hybrid Cloud

19



© Internet Initiative Japan Inc.

do not allow integrated software control, so compromise 

and cooperation between both Kubernetes and devices is 

necessary in order to build the environment. Also, once 

technologies such as SDN (software-defined networking) 

and SDS (software-defined storage) become easier to use in 

on-prem environments, this is likely to spur on the spread of 

Kubernetes in on-prem environments.

To realize a hybrid cloud, we need a common system for 

managing IaaS and on-prem. Kubernetes is without doubt a 

strong candidate for such a system.

3.5 IKE (IIJ Container Engine for Kubernetes)
Kubernetes has the future potential to dramatically im-

prove efficiency by fundamentally changing the design and 

operation of server side systems and the distribution and 

provisioning of applications, and at IIJ, we have also devel-

oped and begun using a container cluster system. Named 

IKE (IIJ Container Engine for Kubernetes), this system was 

created to serve as a common platform for services and as 

an operating environment for our internal systems.

Packages like IKE that provide a container cluster environ-

ment around Kubernetes are called Kubernetes distributions. 

Above, I likened Kubernetes to an OS, but it is actually like 

an OS kernel. An OS cannot do much with a kernel alone. 

It needs the tools and device drivers provided by a distribu-

tion (e.g., RedHat or Ubuntu) before it can be of any use. 

Similarly, simply installing Kubernetes will not get you far. 

At a minimum, you need network drivers and storage drivers 

to suit your infrastructure; for a more pleasant container 

cluster experience, you need management tools to control 

Kubernetes; and a full support environment that facilitates 

the monitoring of applications deployed on Kubernetes, the 

display of alerts, the collections of logs, and so on is also 

indispensable. Packages that provide the ecosystem for 

20



3. Focused Research (2)

Vol. 40Nov.2018

© Internet Initiative Japan Inc.

setting up a Kubernetes cluster along with a mechanism for 

installing that environment as appropriate for the specified 

infrastructure are called Kubernetes distributions. IKE is one 

such distribution.

IKE was not developed for the purpose of providing services 

to customers, so it is only designed to work in a somewhat 

limited operating environment, but it can be installed on IIJ 

GIO, our cloud service, as well as in on-prem environments. 

We also plan to make it installable on other vendors’ IaaS 

platforms and make it possible to provide a common envi-

ronment on any sort of infrastructure.

IIJ has several reasons for implementing a Kubernetes dis-

tribution, and making use of IaaS is not the only objective. 

Our foremost objective is to speed up business, and our 

second objective is to enhance operational specialization 

so as to handle increasingly sophisticated and complex 

systems. This may all sound a little abstract and leave you 

with the impression that our objectives are vague, but what 

we ultimately aim to achieve is an environment in which, 

for example, teams responsible for developing services can 

concentrate on development while operations teams can 

focus on operations. If we can achieve this, I think we will 

naturally also fulfill those objectives (Figure 4).

In any case, containerization is a fascinating area. Simply 

enclosing each process in a container, rather than jamming 

a full server environment into a single container like with a 

virtual machine, makes it possible to realize infrastructure-in-

dependent server-side system distributions and all-purpose 

operation systems, giving rise to products that influence the 

entire IT industry. And this is probably only the beginning. 

It’s exciting to think that more surprising and unexpected 

ideas still lie ahead.

Keisuke Taguchi

Technology Strategy Office, Service Administration Division, IIJ.
As an engineer, I divide my working life equally between freelancing and IIJ. I started out as an applications engineer, but as soon as I encountered cloud 
computing, I ended up giving half of myself over to the infrastructure side of things.
I’m currently absorbed in the area of containerization technology, which I could go on and on about, so I’ll stop here. Tags that apply to me: container, cloud, road 
bike, udon.

management cluster

metrics logKubernetes
cluster

self healing

IKE PortalCI registry

visualize search, analyze

elasticsearch
CLI tools

Kubernetes
cli tools

account
management

monitoring

kibana

prometheus

grafana

firing alert

alertmanager

elasticsearch

Figure 4: IKE

21


	3.	Focused Research (2)
	3.1	Introduction
	3.2	Docker and Kubernetes
	3.3	Best Practices for Harnessing IaaS
	3.4	Realizing Hybrid Clouds with Kubernetes
	3.5	IKE (IIJ Container Engine for Kubernetes)


