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Recommending Security-related Documents

2.1 Information Handled by Security Teams
When running security teams, such as SOCs or CSIRTs, 

you inevitably have to deal with reams of information on a 

daily basis. The term “information” is a single word, but the 

concept is broad—the nature of information and how it is 

handled varies. In many organizations, personnel responsi-

ble for security collect, compile, and create the information 

needed to fulfil their respective roles.

From a systems development perspective, this information falls 

into two broad categories: structured information that is amena-

ble to automated processing, and unstructured information.

Examples of structured information that can be used by 

security teams include IP address blacklists, TCP/IP port 

databases, and SCAPs formulated to automate security op-

erations. Semantic, structured information is amenable to 

automated processing and is thus widely used in systems 

that support security.

Unstructured information, meanwhile, is also necessary in se-

curity operations but does not lend itself well to automated 

processing. It includes, for example, documents written in 

natural languages and images. Even in support systems, it 

has been difficult to do anything with this sort of information 

other than presenting it in document form as part of reference 

information. Unstructured documents and images are often 

simply accumulated within reports and the like created at the 

time the information was relevant, meaning that any subse-

quent use of that information comes down to manual effort.

How then should unstructured information be pulled up 

when necessary and referenced when relevant during, for 

example, the performance of security tasks?

2.2 Dealing with Unstructured Information
A number of technologies aim to solve this sort of problem. 

The first that comes to mind is full-text search systems. 

Anyone can appreciate the convenience to be had in col-

lecting and storing documents that have been created in a 

full-text search system so that users can find information via 

keyword searches when required.

Another type of system is one that presents information of 

potential importance to the user without the user having 

to search for anything. These systems include those that 

provide product recommendations on shopping sites and list 

related articles on news sites. These types of systems are 

called recommender systems.

When looking to use these sorts of convenient, proven technol-

ogies with natural language documents that you have on hand, 

implementing all-text search systems was fairly easy, but the 

task of implementing systems that use collective knowledge, 

such as recommender systems, has posed difficulties. Much of 

the information necessary for security operations within com-

panies is confidential, with its use being restricted to certain 

authorized personnel within the organization, meaning that 

there are few users to begin with and not enough data can be 

amassed to make use of collective knowledge.

With this background in mind, here we test out an approach 

to deciding on recommendations based solely on the infor-

mation in unstructured documents and without using the 

user’s action history. An advantage of the approach we 

took and describe in this article is that user actions and doc-

uments can be handled without being externally exposed. 

Let’s look at the task of recommending documents that are 

related to one that the user has selected.

2.3 Natural Language Processing and Topic Models
What sort of technology is used to deal with unstructured 

documents written in natural languages? This sort of technol-

ogy is called natural language processing (NLP), a field that 

has been studied for many years and comprises various com-

ponent technologies. One of those is topic modelling, which 

uses machine learning to analyze textual data (Figure 1).

2.3.1 Topic Models

Documents come in various types. Even in the limited con-

text of what we read every day, technical documents and 

news articles can be thought of as different types of docu-

ments. News articles also come in a number of types, such 

as those reporting on world affairs and those reporting on 

sports results. The type and frequency of language used 

may also vary according to the type of document. Moreover, 

any single document does not necessarily belong to only 

one type. A document about internet-based attacks sparked 

by international conflict, for example, would belong to both 

world affairs and information security.

In the field of topic models, the types to which a document 

belongs are referred to as topics, and documents are as-

sumed to be generated in the following manner.
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*1 E.g., word-words and write-wrote-written

Figure 1: Overview of Natural Language Processing Using Topic Models

First, the document’s topic mixture (the degree to which a 

document’s topics are mixed) is determined according to 

some probability distribution. The document is then filled 

with words from each topic using the probability of the 

word’s occurrence within that topic until the final document 

has been generated. If these topic and word probability dis-

tributions are calculated from actual textual data, they can 

be used to investigate what topics are currently being fo-

cused on and to categorize documents based on topics.

Methods based on this conceptual approach are collectively 

called topic models. Latent Dirichlet Allocation (LDA) is the 

archetypal model, with a range of variations having also 

been created and studied.

We can expect the topic distributions of closely related 

documents to be close to one another, so we will use 

this observation and take the approach of finding docu-

ments that have topic distributions close to that of the 

document the user has selected and displaying those as 

the recommendations. Here, we use LDA to compute the 

topic distributions.

2.3.2 Preprocessing with Natural Language 

 Processing Techniques

You cannot simply pass a document list into the LDA algo-

rithm. It also needs the frequencies of the words that appear 

in the text. In other words, documents require some prepro-

cessing to make them suitable for the algorithm. At the same 

time, we also pare information considered unnecessary with 

the aim of both enhancing accuracy when generating the 

LDA model and to reduce the volume of data required.

The following preprocessing steps are needed.

1.Extract the body text from document data

This entails removing parts of the document data that 

are not part of the main body text.

2.Split the text into words (tokenization)

With English text, this can largely be accomplished by 

splitting text strings on spaces and line breaks. But a 

number of points also need to be addressed, such as 

line-breaking hyphens in text with line-length limita-

tions. If you want to treat inflectional forms of a word 

as the same word*1, NLP techniques called stemming 
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*2 CVE (https://cve.mitre.org/).

*3 MITRE (https://www.mitre.org/).

*4 NVD Data Feeds (https://nvd.nist.gov/vuln/data-feeds).

*5 gensim (https://radimrehurek.com/gensim/).

*6 nltk (http://www.nltk.org/).

and lemmatization are available. Japanese text does 

not contain any clear word barriers, so the tokeniza-

tion process involves using morphological analysis.

3.Delete unnecessary words

Words such as “a”, “an”, and “the”, for example, ap-

pear frequently in English text but have little to do 

with the overall meaning. Having the dataset filled 

with such words, which do not really seem relevant 

to the objective, is unlikely to improve the accuracy 

of analysis, so the usual procedure is to delete these 

words during preprocessing.

One approach is to use a predefined list of stop words 

to delete. Other approaches include deleting words 

that appear frequently in the input text, and also de-

leting sparse words that appear only infrequently. The 

task of deciding which words it will be effective to 

delete is one of trial and error based on your objective 

and past examples.

4.Create a word frequency table for each document

This involves counting the number of times words 

appear in the document. The word frequency table 

produced is called a bag of words. A separate fre-

quency table is created for each individual document. 

The list of frequency tables is what you actually pass 

into the LDA algorithm.

As you will notice from this description, the bag of words 

does not reflect the order in which words appear in the doc-

uments, which means that LDA does not take word order or 

context into account.

2.4 Prototyping
We created prototypes to validate these technologies. Here, 

we use vulnerability summaries from the CVE*2 database 

of vulnerabilities published by MITRE*3, a US-based not-

for-profit organization. Many natural language processing 

technologies for English text are available as part of librar-

ies, so much of the process can be accomplished simply by 

using those libraries.

First, let’s prepare the source data. In our prototypes, we 

use the 7,692 CVE vulnerabilities released to date in 2018. 

We download the CVE data from the NVD Data Feeds*4 page 

provided by the NIST in the United States. A beta release of 

the data in JSON format is available, but we use the XML 

feed on this occasion, as we have in the past. The dataset in-

cludes fields that are easily handled by computers—including 

CVE ID, publication datetime, datetime of last modification, 

and links to reference information—but we extract only 

the unstructured natural language description (found in the 

vuln:summary tag) for each vulnerability and save these in 

separate files named according to the CVE IDs (Figure 2). We 

now have the source text files ready.

2.4.1 Text Preprocessing

We use the Python libraries gensim*5 and nltk*6 to perform 

the processing steps required for creating the LDA model.

First, we perform the necessary preprocessing on the source 

documents to enable us to create the LDA model. Although 

not present in the CVE data we used in our prototypes, pre-

processing steps commonly performed on English text lifted 

from websites include:

• Removing HTML tags and processing special HTML 

characters

• Joining words split by hyphens at line ends

Next, we tokenize, lemmatize, and remove stop words to cre-

ate word data from the documents. Although we simply pass 

a string into the lemmatize function, internally the function per-

forms a lot of complicated processing for us, including extracting 

CVE-2018-5383

Bluetooth firmware or operating system software drivers in macOS versions 
before 10.13, High Sierra and iOS versions before 11.4, and Android versions 
before the 2018-06-05 patch may not sufficiently validate elliptic curve 
parameters used to generate public keys during a Diffie-Hellman key 
exchange, which may allow a remote attacker to obtain the encryption key 
used by the device.

Figure 2: Example of a text file named 
by CVE ID and containing the vulnerability summary
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only the nouns, verbs, adjectives, and adverbs and converting 

inflectional forms of each word to a common base form.

We perform the above steps on each of the documents, and 

create a list containing the extracted word data.

The gensim.utils.lemmatize() function that we invoke in the 

normalize function here appends part-of-speech information 

to the end of words, so we use a regular expression to re-

move this.

2.4.2 Creating the Dictionary and Bag of Words

The gensim library that we use here assigns an ID to each 

word. It assigns word IDs based on the list of word data that 

we created and then counts the words in each document. 

This data structure is called a dictionary.

We then use gensim to analyze and filter the content of the 

dictionary. Specifically, we removed:

• Words that appear in many documents

 (Example: Words that appear in 20% or more of the 

documents)

• Words that seldom appear

 (Example: Words that appear in only one document)

We experimented by changing the parameters and omitting 

this processing step altogether. We observed a noticeable 

decline in categorization accuracy with models that we 

created without removing words that appear in many doc-

uments. When it came to the removal of words that only 

seldom appear, we did not observe any noticeable effect to 

the extent that we experimented.

Using the filtered dictionary, we create a bag-of-words 

(BoW) vector for each document. These are vector repre-

sentations of the number of times words in the dictionary 

appear in the document.

2.4.3 Creating the LDA Model

We create the LDA model from the dictionary and bag of 

words, and then save the model and the associated data 

that we have created in a file.

When creating an LDA model, you need to specify the 

number of topics. The appropriate number of topics to use 

apparently changes depending on the source documents as 

well as the volume of words that appear and the way they 

are distributed. Various approaches to deciding on the value 

exist. We experimented by changing which documents, and 

how many, we fed into the model. With our data, we found 

that we were often able to create models that did relatively 

well by using values in the range of 30–50, and we there-

fore use 50 here.

2.5 Analyzing Documents Using the Model
We now analyze the documents using this model. The re-

sults allow us to see what sort of topics each document 

contains.

2.5.1 Pulling Up Similar Documents

Using the results of this document-wise analysis of topics 

and calculating the cosine similarity between vectors al-

lows us to select documents that have closely similar topic 

components from among the set of all documents. So we 

selected a number of CVE vulnerabilities that had been in 

dic = gensim.corpora.Dictionary(docs)
dic.filter_extremes(no_above=0.2, no_below=1)
bow = [ dic.doc2bow(doc) for doc in docs ]

lda = gensim.models.ldamodel.LdaModel(bow, id2word=dic, num_topics=50)

lda.save(filename_model)
dic.save(filename_dic)
gensim.corpora.MmCorpus.serialize(filename_corpus, bow)

results = []
for doc in docs:
    bow = lda.id2word.doc2bow(doc)
    doc_topics = lda.get_document_topics(bow)
    results.append(doc_topics)

def normalize(txt):
    # De-hyphenation of words across a line-break
    txt = re.sub(r'-\n', '', txt)
    # Concatenate lines
    txt = re.sub(r'\n', ' ', txt)
    # Tokenization and lemmatization 
    tokens = [ re.sub(r'/[A-Z]+$', '', x.decode('utf-8'))
    　　　　　　for x in gensim.utils.lemmatize(txt) ]
    # Remove stop-words
    stopwords = nltk.corpus.stopwords.words('english')
    tokens = [ token for token in tokens if token not in stopwords ]
    return tokens

docs = []
for path in files:
    with open(path, encoding='utf-8') as f:
        txt = ''.join(f.readlines())
    tokens = normalize(txt)
    docs.append(tokens)

[b'cve/VB',
 b'high/JJ',
 b'rate/NN',
 b'vlan/NN',
 ...
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the list also included vulnerabilities related to a PHP chatbot 

program and a web application framework with similar cosine 

similarity scores. Using the cosine similarity of topics as the 

only threshold metric may not produce very good results.

As demonstrated, we were able to determine that it is pos-

sible, to an extent, to find CVE entries that are along the 

same lines as any particular CVE vulnerability of interest by 

using a topic model and cosine similarity scores to find CVE 

entries with similar summaries.

That said, we observed many cases in which the model also 

pulled up a bunch of documents that did not appear to be 

very similar at all. And in some cases, the model failed to 

pull up some of the documents we had hoped for.

Take CVE-2018-5390 (Figure 5), a DoS vulnerability in 

the Linux kernel’s TCP implementation. The documents at 

the top of the list of those determined to be similar did not 

include any entries with relevant content. The source doc-

uments included, for instance, 105 CVE entries on Linux 

kernel vulnerabilities, but they did not have high similarity 

to CVE-2018-5390.

Apart from where we set the cosine similarity threshold, 

these results can also be influenced by the parameters used 

the news and such recently to verify whether we could ac-

tually pull up similar vulnerabilities.

For example, when we looked at CVE-2018-8373 (Figure 3), 

which was fixed by a monthly Microsoft patch in August, 

we obtained a whole list of similar CVE vulnerabilities that 

also had to do with a “Scripting Engine Memory Corruption 

Vulnerability” (CVE-2018-0955, CVE-2018-0996, CVE-

2018-1001, CVE-2018-8267, etc.).

Upon reading the documents determined to be similar, we did 

indeed observe many results that were similar enough to say 

that the documents followed an almost standardized wording.

When we looked at how similar the related CVE vulnerabilities 

listed in the CVE-2018-8373 summary were, we observed 

cosine similarities in the range of 0.73–1.0. However, 178 

CVE vulnerabilities fell within this range. Although we can 

indeed say that we are able to find similar documents, it ap-

pears we may need some fine-tuning if we are to use these 

similarity scores to present documents of interest to the user.

Next, let’s look at CVE-2018-3620 (Figure 4), which relates 

to an exploit known as Foreshadow-NG, a side-channel at-

tack on CPUs that use speculative execution. Related entries 

in the list of similar CVE vulnerabilities that we calculated 

included CVE-2018-3646 and CVE-2018-3615. However, 

A remote code execution vulnerability exists in the way that the scripting engine handles 
objects in memory in Internet Explorer, aka "Scripting Engine Memory Corruption 
Vulnerability." This affects Internet Explorer 9, Internet Explorer 11, Internet Explorer 10. 
This CVE ID is unique from CVE-2018-8353, CVE-2018-8355, CVE-2018-8359, 
CVE-2018-8371, CVE-2018-8372, CVE-2018-8385, CVE-2018-8389, CVE-2018-8390.

[('CVE-2018-0955', 1.0),
 ('CVE-2018-0988', 1.0),
 ('CVE-2018-1001', 1.0),
 ('CVE-2018-8267', 1.0),
 ('CVE-2018-8353', 1.0),
 ('CVE-2018-8371', 1.0),
 ('CVE-2018-8373', 1.0),
 ('CVE-2018-8389', 1.0),
 ('CVE-2018-0996', 0.9999999),
 ('CVE-2018-8242', 0.9999997),
 ('CVE-2018-0839', 0.9968462),
 ...
 ('CVE-2018-8385', 0.9579928),
 ...
 ('CVE-2018-8372', 0.8273082),
 ('CVE-2018-8355', 0.8272891),
 ...
 ('CVE-2018-8359', 0.7355896),

[('CVE-2018-3620', 0.9999924),
 ('CVE-2018-3646', 0.9803927),
 ('CVE-2018-3640', 0.88989854),
 ('CVE-2018-3693', 0.8448397),
 ('CVE-2018-3615', 0.8389072),
 ('CVE-2018-5954', 0.8318751),
 ('CVE-2018-1000181', 0.80068177),
 ...

[('CVE-2018-5390', 0.99944544),
 ('CVE-2018-1237', 0.81856203),
 ('CVE-2018-1240', 0.8044424),
 ('CVE-2018-1217', 0.80138516),
 ...

Figure 3: Summary of CVE-2018-8373

Linux kernel versions 4.9+ can be forced to make very expensive calls to 
tcp_collapse_ofo_queue() and tcp_prune_ofo_queue() for every incoming packet 
which can lead to a denial of service.

Figure 5: Summary of CVE-2018-5390

Systems with microprocessors utilizing speculative execution and address 
translations may allow unauthorized disclosure of information residing in the L1 
data cache to an attacker with local user access via a terminal page fault and a 
side-channel analysis.

Figure 4: Summary of CVE-2018-3620
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at each stage in the model creation process. Experiments 

we performed beyond what we have described here showed 

that the results can vary substantially depending on where 

these parameters are set. This also gave us insight into the 

difficulty of dealing with topic models, inasmuch as it is dif-

ficult to adjust each of the parameters before examining the 

results of the model in full.

2.5.2 Improving Accuracy by Using Peripheral Information

Topic models are one effective way of quickly finding similar 

documents from within a collection of documents written 

in unstructured natural language. That said, if the output 

results are to be judged on the basis of whether the model 

is able to properly pick out documents of interest to the 

reader, then some fine-tuning suitable to the application at 

hand will be needed to improve accuracy. This is because 

which similar documents will be relevant to the user differs 

according to the circumstances.

For instance, if you want group similar articles from the daily 

news, then everything other than the most recent informa-

tion is likely to simply get in the way. Yet if searching for 

documents relevant to dealing with a problem that occurs 

only rarely, then surely the reader would also like older infor-

mation to be included in the document search results.

To deal with this diversity, some academic research on topic mod-

els is directed at adjusting the structure of models in the aim of 

improving accuracy for specific applications. This includes, for ex-

ample, models that incorporate analysis of time-series variations 

in topics and models that incorporate analysis of author names.

For this exercise here targeting CVE and security-related 

documents, we also experimented with filtering using pe-

ripheral information. For internal memos, for example, we 

were able to improve the accuracy with which we found 

documents of relevance to the user by giving priority to doc-

uments created around the same time as the document in 

question. When looking at internal documents, we found 

that refining the results based on keywords appearing in 

project names and the document path was effective.

We also looked at whether refining the results in a situa-

tion-independent manner could improve accuracy. We had 

some good results when filtering the list based on the re-

sults of topic clustering using clustering algorithms available 

in the Python scikit-learn*7 library, such as DBSCAN. With 

this method, however, tuning is crucial because the param-

eters set when clustering greatly influence the nature of the 

clusters, which means it may be difficult to use this ap-

proach consistently in a situation-independent manner.

As discussed here, we conducted a range of experiments 

focusing on NLP and topic models in an effort to explore 

effective ways of dealing with unstructured information. 

Although we were unable to produce satisfactory results 

with any one method alone, we did discover that, by com-

bining multiple methods according to the objective, it may 

be possible to fine-tune the approach and get closer to the 

desired output. Based on these findings, we will continue 

to look at applications of these methods to situations in-

volving the use of unstructured documents under certain 

conditions.

Yasunari Momoi

Lead Engineer, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Momoi joined IIJ in January 1999. Having worked on research and development of a range of services, including security services and 
wireless IC tag systems, he is now engaged in research and development related to information security in general.
As a member of IIJ-SECT, he participates in the activities and running of groups such as Information Security Operation providers Group 
Japan (ISOG-J) and ICT-ISAC.

Tadaaki Nagao

Senior Engineer, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Nagao joined IIJ in April 1998. Having worked on security services development, SDN development, and other roles, he is now engaged 
in research on information security in general from a theoretical perspective.
He is a member of IIJ Group emergency response team IIJ-SECT.

1515


	2.	Focused Research (1)
	2.1	Information Handled by Security Teams
	2.2	Dealing with Unstructured Information
	2.3	Natural Language Processing and Topic Models
	2.3.1	Topic Models
	2.3.2	Preprocessing with Natural Language 
		Processing Techniques

	2.4	Prototyping
	2.4.1	Text Preprocessing
	2.4.2	Creating the Dictionary and Bag of Words
	2.4.3	Creating the LDA Model

	2.5	Analyzing Documents Using the Model
	2.5.1	Pulling Up Similar Documents
	2.5.2	Improving Accuracy by Using Peripheral Information





