
© 2016 Internet Initiative Japan Inc.

3. Technology Trends

TLS Trends

There has recently been heated discussion regarding TLS (Transport Layer Security) in the IETF (Internet Engineering Task

Force). The reason the debate has become so lively is without a doubt the disclosure of the U.S. government’s top-secret PRISM

surveillance and intelligence gathering program by Edward Snowden in 2013. With the existence of the pervasive monitoring

typified by PRISM being brought to light, the IETF was forced to revisit the issue of privacy. As stated in RFC 7258, protocols

drafted by the IETF in the future will be designed to make pervasive monitoring more difficult.

As far as HTTP is concerned, the use of TLS will likely be highly recommended. In fact, when using HTTP/2 protocol that was

published in 2015 (RFC 7540), the use of TLS is effectively mandatory because major browsers will require it. Of course, use of

TLS is also strongly recommended with the current mainstream HTTP/1.1 protocol. HTTP servers must have certificates to use

TLS. Until now the issuing of certificates cost money, and that discouraged many people from using TLS. It is now also possible

to issue certificates for free due to the Let’s Encrypt project.

The latest version of TLS is 1.2, and eight years have passed since it was standardized. Over this period of time, a variety of

attack techniques that target TLS have been discovered. RFC 7457 is an outstanding document that provides a summary of these

attack techniques. As new attack methods have appeared and various cryptographic technologies have become obsolete, the

recommended methods for using TLS have also changed. The currently recommended methods are detailed in RFC 7525. The

IETF is now working on the draft for TLS 1.3 based on this knowledge. In this article we will give an explanation of trends in TLS

targeted at those who already know its mechanisms.

3.1 Versions
The previous incarnation of TLS was the SSL (Secure Socket Layer) protocol designed by Netscape Communications. The SSL 2.0

specification was published in 1995, and SSL 3.0 was published in 1996. There were a variety of issues with the design of SSL 2.0,

and use of it was prohibited by RFC 6176. SSL 3.0 also had issues with attacks such as the POODLE vulnerability, as well as flaws

in its design, and RFC 7568 required that it not be used.

SSL was brought in to the IETF and standardized, at which point it became TLS. TLS versions 1.0, 1.1, and 1.2 have been established.

I will go into more detail later, but currently the use of a method

called AEAD (Authenticated Encryption with Associated Data)

is recommended for data authentication and encryption. AEAD

cannot be used with TLS 1.0 or 1.1. Getting straight to the point,

to use TLS safely it is now necessary to utilize TLS 1.2 via a

suitable method.

Table 1 shows a summary of information regarding SSL/TLS

versions (ID is an abbreviation of Internet-Draft). We will also

discuss TLS 1.3 in this article, but as its specifications are

currently being drawn up, please understand that it may end

up slightly different.

3.2 Suitable Cipher Suites
RFC 5246 in which TLS 1.2 was established requires that the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite be implemented.

This has the following meaning:

•		 RSA	for	key	exchange

•		 RSA	also	for	server	authentication

•		 AES	in	CBC	mode	for	the	encryption	of	communications

•		 SHA1	for	the	MAC	generation	function

The TLS 1.2 cipher suite required by HTTP/2 and recommended for first proposal in RFC 7525 is TLS_ECDHE_RSA_WITH_AES_128_

GCM_SHA256. This is interpreted as follows:

Table 1: SSL/TLS Versions

Version UsageYear Established

SSL 2.0

SSL 3.0
1996
(RFC issued in 2011)

1995Stopped at ID

RFC 6101

Use prohibited by RFC 6176

TLS 1.0 1999RFC 2246

TLS 1.1 2006RFC 4346

TLS 1.2

TLS 1.3

2008RFC 5246

Draft underwayID

Use prohibited by RFC 7568

Specification

38

© 2016 Internet Initiative Japan Inc.

3. Technology Trends

Vol. 31Jun.2016

•		 ECDHE	(Elliptic	Curve	Diffie-Hellman,	Ephemeral)	for	key	exchange

•		 RSA	for	server	authentication

•		 AES	128	in	GCM	(Galois/Counter	Model)	mode	for	the	encryption	of	communications

•		 SHA256	for	the	secure	hash	function

In TLS 1.3, the implementation of TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 is required in addition to TLS_ECDHE_

RSA_WITH_AES_128_GCM_SHA256. Server authentication has merely changed from RSA to ECDSA (DSA using elliptic

curve cryptography).

Next, I will explain the reasons why the recommended cipher suites have changed in this way.

3.3 Public-Key Cryptography and Key Exchange
As mentioned above, the recommended key exchange method has changed from RSA to ephemeral Diffie-Hellman keys. This is

because ephemeral Diffie-Hellman keys provide forward secrecy, which RSA lacks. Forward secrecy means that the secrecy of

data is protected going forward.

Let us look at why there is no forward secrecy when RSA is used for key exchange. When a client connects to a server using TLS, the

server sends a certificate to the client. This certificate consists of the server’s public key signed by a certificate authority. The client

generates the secret it needs to share with the server, and encrypts it with the server’s RSA public key before sending it to the server.

Only a server with the RSA private key can decrypt this ciphertext. This means the client and server have successfully shared secret

data, so symmetric-key cryptography is used to protect the communication channel using a key generated from this secret.

At this point, the encrypted channel is secure. It is almost impossible for a third party to intercept content. However, if the following

events were to actually occur, communications could be intercepted.

Let us suppose that certain pervasive monitoring has captured all the data carried over this encrypted channel. Then, when the

server is destroyed due to it being swapped out, the data on the hard disk was not erased by mistake. If the party performing

pervasive monitoring were to obtain this hard disk, it could extract the private key, so it would be possible to decrypt the saved

encrypted channel data in sequence.

Meanwhile, with ephemeral Diffie-Hellman methods, the client and server both generate temporary public and private keys. These

private keys are not saved to the hard disk, so the aforementioned example would not happen.

It seems that the ECDHE (RFC 4492) ephemeral Diffie-Hellman method achieved through elliptic curve cryptography is more likely

to see widespread use than the original DHE (Diffie-Hellman, Ephemeral). This is because of the following:

•		 ECDHE	exchanges	less	data	than	DHE.

•		 The	computation	rate	of	ECDHE	is	faster	than	DHE.

•		 ECDHE	has	carefully-selected	parameters	defined	in	advance.	Although	there	is	an	ID	aimed	at	defining	parameters	for	DHE,	

it has not yet reached the RFC stage.

•		 As	mentioned	earlier,	ECDHE	is	listed	as	the	suite	for	first	proposal	in	RFC	7525.

See “1.4.2 Forward Secrecy” in IIR Vol.22 for more information about forward secrecy.

3.4 The Obsolescence of Symmetric-Key Cryptography
TLS 1.1 and earlier uses the following two ciphertext formats.

•		 Stream	ciphers

•		 CBC	(Cipher	Block	Chaining)	mode	block	ciphers

39

© 2016 Internet Initiative Japan Inc.

A range of attack methods have been found in RC4, which is the only practical option for stream ciphers, so their use is prohibited (RFC 7465).

With regard to TLS 1.0 and earlier CBC mode block ciphers, the BEAST attack method is well known. Additionally, the “MAC-then-

encrypt” method is used with TLS 1.2 and earlier CBC mode block ciphers. A MAC (Message Authentication Code) is auxiliary

data for ensuring data has not been altered and authenticating it. MAC-then-encrypt involves generating a MAC from plaintext,

then appending this MAC to the plaintext and encrypting the result. An attack technique called padding oracle attacks that targets

MAC-then-encrypt has been found. For this reason, the “encrypt-then-MAC” format is proposed in RFC 7366 as a replacement for

MAC-then-encrypt.

In TLS 1.2, AEAD (Authenticated Encryption with Associated Data) was specified as a third format for ciphertext. AEAD is a method

in which encryption and authentication are carried out simultaneously. Currently, the use of AEAD is recommended instead of

stream ciphers or CBC mode block ciphers. The following symmetric-key encryption modes can be used with AEAD:

•	 AES-GCM	(Galois/Counter	Model)	mode

•	 AES-CCM	(Counter	with	CBC-MAC)	mode

In TLS 1.3, the stream cipher and CBC mode block cipher formats have been deleted, so only AEAD is defined.

3.5 Handshake
In this section, I will explain actual TLS communications.

3.5.1 Full Handshake

When a client first connects to a server, a full handshake must be performed. In TLS 1.2, the process shown in Figure 1 takes place

when TLS_RSA_WITH_AES_128_CBC_SHA is selected.

•		 The	client	advertises	the	cipher	suites	it	supports	in	a	ClientHello	message.

•			 The	 server	 indicates	 it	 has	 selected	 TLS_RSA_WITH_AES_128_CBC_SHA	 in	 a	 ServerHello	 message.	 The	 server’s	 RSA	

certificate is included in the Certificate message.

•	 The	client	generates	a	secret,	encrypts	it	with	the	server’s	RSA	public	key,	and	sends	it	stored	in	a	ClientKeyExchange	message.	

A ChangeCipherSpec message is then sent to switch the communication channel to an encrypted channel. This channel is

encrypted using AES-CBC mode. Immediately after switching to an encrypted channel, a Finished message is sent to confirm

that the handshake concluded successfully. All data subsequently received from applications is also sent using this encrypted

channel. The gray parts of Figure 1 indicate the encrypted channel.

Figure 1: TLS 1.2 Full Handshake TLS_RSA_WITH_
AES_128_CBC_SHA

Figure 2: TLS 1.2 Full Handshake TLS_ECDHE_RSA_WITH_
AES_128_GCM_SHA256

ClientKeyExchange
Secret encrypted using server’s RSA public key

Data
CBC

Data
CBC

Finished
CBC

Finished
CBC

ChangeCipherSpec

ChangeCipherSpec

ServerHello

Client Server

ClientHello
Session ID not specified

Certificate
RSA certificate

ServerHelloDone

ClientKeyExchange
ECDHE ephemeral public key

Data
AEAD

Data
AEAD

Finished
AEAD

Finished
AEAD

ChangeCipherSpec

ChangeCipherSpec

ServerHello

Client Server
ClientHello

Session ID not specified

Certificate
RSA certificate

ServerKeyExchange
ECDHE ephemeral public key

ServerHelloDone

40

© 2016 Internet Initiative Japan Inc.

3. Technology Trends

Vol. 31Jun.2016

•		 The	server	uses	its	private	key	to	extract	the	secret,	and	in	the	same	way	as	the	client	sends	a	ChangeCipherSpec	message	to	

switch the communication channel to an encrypted channel.

Next, I will discuss what happens when TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 is selected in TLS 1.2 (Figure 2). The

differences compared to TLS_RSA_WITH_AES_128_CBC_SHA are as follows:

•	 After	 the	 server	 receives	 the	 ClientHello,	 it	 selects	 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.	 Then,	 it	 generates	

ECDHE ephemeral public and private keys. The public key is sent inside a ServerKeyExchange message.

•	 The	client	also	generates	ECDHE	ephemeral	public	and	private	keys.	It	generates	a	secret	from	its	private	key	and	the	server’s	

public key. Its public key is sent inside a ClientKeyExchange message.

•		 The	server	generates	a	secret	from	its	private	key	and	the	client’s	public	key.

The full handshake process doesn’t change at all for TLS 1.0, 1.1, or 1.2. However, the full handshake process has been radically

redesigned in TLS 1.3. Above all, it reduces the RTT (Round Trip Time) by one step by handling key exchange in the Hello message.

•	 	The	client	creates	ECDHE	ephemeral	public	and	private	keys,	and	sends	the	public	key	stored	in	a	ClientHello	message	option.

•	 The	server	also	creates	ECDHE	ephemeral	public	and	private	keys,	and	sends	them	stored	in	a	ServerHello	message	option.	

The communication channel is immediately encrypted from this point. The Certificate and Finished messages that store

server certificates are sent encrypted. After the Finished message is sent, a switch is made to an even more secure encrypted

channel. The different shades of gray in Figure 3 indicate these different encrypted channels.

•	 	After	sending	a	Finished	message	over	the	current	encrypted	channel,	the	client	switches	to	a	more	secure	encrypted	channel.

3.5.2 Resuming a Session

Once a client and server have performed a full TLS 1.2 handshake, the key exchange process can be omitted by resuming that

session. Take a look at Figure 4.

•	 The	client	specifies	the	session	ID	for	the	session	it	would	

like to resume in the ClientHello message.

•	 If	the	server	has	saved	the	status	of	the	specified	session	

ID, it uses this to switch to an encrypted channel.

In addition to eliminating the need for heavy public key

cryptography calculations, resuming a session also reduces

the RTT by one step. However, this method requires that

Figure 5: Full Handshake for TLS 1.2 Session Tickets

Figure 3: TLS 1.3 Full Handshake TLS_ECDHE_RSA_WITH_
AES_128_GCM_SHA256

Figure 4: TLS 1.2 Session Resumption

Client Server
ClientHello

Empty session ticket
ServerHello

Empty session ticket

Data

Data

Finished

ChangeCipherSpec

ChangeCipherSpec

NewSessionTicket

ClientKeyExchange

Finished

ServerHelloDone

Certificate

Data

Data

Finished

Finished

CertificateVerify

Client Server
ClientHello

ECDHE ephemeral public key

Certificate
RSA certificate

ServerHello
ECDHE ephemeral public key

Data

Data

Client Server
ClientHello
Session ID

ChangeCipherSpec

Finished

Finished
AEAD

ChangeCipherSpec

ServerHello

41

© 2016 Internet Initiative Japan Inc.

servers save session information. The amount of status data that must be retained also increases in proportion to the number of

clients. This method increases the load on the server, which isn’t exactly ideal.

The session ticket method defined in RFC 5077 is one way to reduce this server load. Session tickets are encrypted session

information that only the server can decrypt. Using session tickets does away with the need for servers to retain session information.

To use session tickets with TLS 1.2, it is first necessary to perform a full handshake for the session tickets (Figure 5).

•	 The	client	sends	an	empty	session	 ticket	as	an	extension	of	 the	ClientHello	message	 to	notify	 the	server	 that	 it	supports	

session tickets.

•	 The	server	also	notifies	the	client	that	it	supports	session	tickets	by	specifying	an	empty	session	ticket	in	the	ServerHello	

options.

•	 Immediately	before	switching	to	an	encrypted	channel	using	ChangeCipherSpec,	the	server	sends	the	session	ticket	it	has	

generated in a NewSessionTicket message.

•	 The	client	associates	the	session	ticket	it	was	sent	with	the	current	session	information,	then	saves	it.

Next, I will explain how to resume a session using session tickets in TLS 1.2 (Figure 6).

•	 The	client	extracts	the	session	information	and	session	ticket	to	resume,	and	sends	the	session	ticket	in	the	ClientHello	options.

•	 The	server	decrypts	the	session	ticket	to	obtain	the	session	information.	If	necessary,	new	session	information	is	sent	in	a	

NewSessionTicket message. The server then switches to an encrypted channel.

•	 The	client	uses	the	aforementioned	session	information	to	switch	to	the	encrypted	channel.

TLS 1.3 session tickets are integrated with the PSK (Pre-Shared Key) defined in RFC 4297. The PSK method involves the use of

a pre-shared secret instead of a public key for server or client authentication. If the TLS 1.3 PSK handshake is only used for the

session ticket function, it doesn’t differ much from TLS 1.2 (Figure 7). The minor differences are as follows:

•	 After	a	full	handshake,	the	server	can	send	NewSessionTicket	messages	at	any	time.

•	 As	with	the	TLS	1.3	full	handshake,	the	encrypted	channel	switches	twice.

3.5.3 Client Authentication Using Certificates

Let us consider a case in which a certain server is accessing a certain page using TLS. We will assume the links on that page all

point to the same server, but the content requires certificate-based client authentication.

In TLS 1.2, renegotiation is carried out when certificate-based client authentication becomes necessary at some point. This

involves performing the handshake process again. Unlike a full handshake, this handshake is performed within the encrypted

channel (Figure 8).

Figure 6: Resuming a Session Using TLS 1.2 Session Tickets Figure 7: Resuming a Session Using TLS 1.3 Session Tickets

Data

Data

Client Server
ClientHello

Session ticket
ServerHello

Empty session ticket

Finished

ChangeCipherSpec

ChangeCipherSpec

NewSessionTicket

Finished

Data

Data

Client Server
ClientHello

Session ticket list
ServerHello

Selected session ticket

Finished

EncryptedExtensions

Finished

42

© 2016 Internet Initiative Japan Inc.

3. Technology Trends

Vol. 31Jun.2016

Author:

Kazuhiko Yamamoto

Senior Researcher, Research Laboratory, IIJ Innovation Institute Inc.
Mr. Yamamoto is interested in applying the parallel technology of the Haskell programming language to network programming.
Recently he has been working on the HTTP/2 and TLS 1.3 protocols.
He has translated the books “Programming in Haskell” and “Parallel and Concurrent Programming in Haskell”.

•	 The	server	sends	a	HelloRequest	message	to	the	client	requesting	renegotiation.

•	 The	client	sends	a	ClientHello	message.

•	 The	server	sends	a	CertificateRequest	along	with	the	ServerHello	message	requesting	the	client’s	certificate.

•	 The	client	sends	the	client	certificate	in	a	Certificate	message	when	sending	the	ClientKeyExchange	message.

The original purpose of renegotiation is to refresh and extend the life of the encrypted channel. It is also used for certificate-based

client authentication due to the limitation in TLS 1.2 that requires CertificateRequest messages to be sent immediately after the

ServerHello message.

In TLS 1.3, a clear distinction is made between refreshing the encrypted channel and certificate-based client authentication. This

enables CertificateRequest messages to be sent from the server to the client at any time (Figure 9).

3.5.4 0-RTT

In TLS 1.3, a handshake mode called 0-RTT that also encrypts and sends application data when sending a ClientHello message is

under consideration. This is a little complicated, so I’ll skip the explanation for now. Anyone interested should refer to the TLS 1.3 ID.

3.6 Compression
In TLS 1.2 and earlier, there is a compressed text format in addition to plaintext and ciphertext. When using a compression function,

plaintext is compressed into compressed text, then this is encrypted to create ciphertext. Unfortunately, when a compression

function is used, the text is vulnerable to attacks such as CRIME and BREACH.

For this reason, you cannot use compression functions when using TLS 1.2. Encrypt plaintext directly to create the ciphertext. In

TLS 1.3, the compressed text format has been deleted, and only plaintext and ciphertext are defined.

3.7 Let’s Encrypt
Let’s Encrypt is a project for automatically issuing free server

certificates. Only Domain Validation (DV) certificates can

be issued, so the issuing of Organization Validation (OV) or

Extended Validation (EV) certificates is not possible. At this

point in time, wildcard certificates cannot be issued. When there

are multiple server names, you can either request the issue of

enough DV certificates to match the number of servers, or you

can use a Subject Alternative Name (SAN). The commands

provided by Let’s Encrypt implement the ACME (Automatic

Certificate Management Environment) protocol that the IETF

is currently working on standardizing. See “1.4.2 The Let’s

Encrypt Project and the ACME Protocol for Automatic Certificate

Issuing” in IIR Vol.30 for more information about Let’s Encrypt.

3.8 Final Remark
In this article, I have only given the names of attack techniques,

and not explained the specific methods involved. More

detailed explanations of each attack technique can be found

easily by searching online. Anyone interested should look up

this information to find out more.

Figure 8: Certificate-Based Client Authentication Using TLS 1.2

Figure 9: Certificate-Based Client Authentication Using TLS 1.3

Client

HelloRequest

ServerHello

CertificateRequest

Certificate

ServerHelloDone

ClientKeyExchange

Certificate

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Data

Data

ClientHello

Server

Client

CertificateRequest

CertificateVerify

Certificate

Server

43

	3.	Technology Trends
	3.1	Versions
	3.2	Suitable Cipher Suites
	3.3	Public-Key Cryptography and Key Exchange
	3.4	The Obsolescence of Symmetric-Key Cryptography
	3.5	Handshake
	3.5.1	Full Handshake
	3.5.2	Resuming a Session
	3.5.3	Client Authentication Using Certificates
	3.5.4	0-RTT

	3.6	Compression
	3.7 Let’s Encrypt
	3.8 Final Remark

